List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9576037/publications.pdf Version: 2024-02-01

		16451	22832
267	15,626	64	112
papers	citations	h-index	g-index
273	273	273	12504
all docs	docs citations	times ranked	citing authors

LADS WAYCREDC

#	Article	IF	CITATIONS
1	Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose, 2022, 29, 1-23.	4.9	158
2	The effect of crosslinking on ion transport in nanocellulose-based membranes. Carbohydrate Polymers, 2022, 278, 118938.	10.2	11
3	Understanding the Drying Behavior of Regenerated Cellulose Gel Beads: The Effects of Concentration and Nonsolvents. ACS Nano, 2022, 16, 2608-2620.	14.6	11
4	Surface tailoring of cellulose aerogel-like structures with ultrathin coatings using molecular layer-by-layer assembly. Carbohydrate Polymers, 2022, 282, 119098.	10.2	11
5	Adsorption of paper strength additives to hardwood fibres with different surface charges and their effect on paper strength. Cellulose, 2022, 29, 2617-2632.	4.9	8
6	Spinning of Stiff and Conductive Filaments from Cellulose Nanofibrils and PEDOT:PSS Nanocomplexes. ACS Applied Polymer Materials, 2022, 4, 4119-4130.	4.4	8
7	Sulfonated Cellulose Membranes Improve the Stability of Aqueous Organic Redox Flow Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	5
8	Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanoclays. Carbohydrate Polymers, 2022, 295, 119867.	10.2	3
9	The Use of Layerâ€byâ€Layer Selfâ€Assembly and Nanocellulose to Prepare Advanced Functional Materials. Advanced Materials, 2021, 33, e2001474.	21.0	71
10	PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential. Journal of Colloid and Interface Science, 2021, 584, 57-66.	9.4	36
11	The use of model cellulose gel beads to clarify flame-retardant characteristics of layer-by-layer nanocoatings. Carbohydrate Polymers, 2021, 255, 117468.	10.2	15
12	Radicalâ€Based Synthesis and Modification of Amino Acids. Angewandte Chemie - International Edition, 2021, 60, 1098-1115.	13.8	85
13	Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590, 47-56.	27.8	711
14	Entropy drives the adsorption of xyloglucan to cellulose surfaces – A molecular dynamics study. Journal of Colloid and Interface Science, 2021, 588, 485-493.	9.4	47
15	Functional Lignin Nanoparticles with Tunable Size and Surface Properties: Fabrication, Characterization, and Use in Layer-by-Layer Assembly. ACS Applied Materials & Interfaces, 2021, 13, 26308-26317.	8.0	13
16	Hierarchical build-up of bio-based nanofibrous materials with tunable metal–organic framework biofunctionality. Materials Today, 2021, 48, 47-58.	14.2	38
17	On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors. Carbohydrate Polymers, 2021, 260, 117818.	10.2	18
18	Synthesis of γ-Oxo-α-amino Acids via Radical Acylation with Carboxylic Acids. Journal of Organic Chemistry, 2021, 86, 8448-8456.	3.2	20

#	Article	IF	CITATIONS
19	Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters. ACS Applied Materials & Interfaces, 2021, 13, 32467-32478.	8.0	6
20	Layerâ€by‣ayer Assembly of Strong Thin Films with High Lithium Ion Conductance for Batteries and Beyond. Small, 2021, 17, e2100954.	10.0	15
21	Redispersion Strategies for Dried Cellulose Nanofibrils. ACS Sustainable Chemistry and Engineering, 2021, 9, 11003-11010.	6.7	21
22	Structure Development of the Interphase between Drying Cellulose Materials Revealed by In Situ Grazing-Incidence Small-Angle X-ray Scattering. Biomacromolecules, 2021, 22, 4274-4283.	5.4	8
23	Polyelectrolyte-Assisted Dispersions of Reduced Graphite Oxide Nanoplates in Water and Their Gas-Barrier Application. ACS Applied Materials & Interfaces, 2021, 13, 43301-43313.	8.0	7
24	Specific ion effects in the adsorption of carboxymethyl cellulose on cellulose: The influence of industrially relevant divalent cations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127006.	4.7	7
25	Layerâ€byâ€Layer Selfâ€Assembled Nanostructured Electrodes for Lithiumâ€lon Batteries. Small, 2021, 17, e2006434.	10.0	12
26	Layer-by-layer modified low density cellulose fiber networks: A sustainable and fireproof alternative to petroleum based foams. Carbohydrate Polymers, 2020, 230, 115616.	10.2	21
27	Influence of Solubility on the Adsorption of Different Xyloglucan Fractions at Cellulose–Water Interfaces. Biomacromolecules, 2020, 21, 772-782.	5.4	16
28	Coaxial Spinning of Oriented Nanocellulose Filaments and Core–Shell Structures for Interactive Materials and Fiber-Reinforced Composites. ACS Applied Nano Materials, 2020, 3, 10246-10251.	5.0	17
29	Swelling of Cellulose-Based Fibrillar and Polymeric Networks Driven by Ion-Induced Osmotic Pressure. Langmuir, 2020, 36, 12261-12271.	3.5	10
30	Self-Assembled Polyester Dendrimer/Cellulose Nanofibril Hydrogels with Extraordinary Antibacterial Activity. Pharmaceutics, 2020, 12, 1139.	4.5	12
31	Tailoring of rheological properties and structural polydispersity effects in microfibrillated cellulose suspensions. Cellulose, 2020, 27, 9227-9241.	4.9	25
32	Macro- and Microstructural Evolution during Drying of Regenerated Cellulose Beads. ACS Nano, 2020, 14, 6774-6784.	14.6	41
33	Wet-expandable capsules made from partially modified cellulose. Green Chemistry, 2020, 22, 4581-4592.	9.0	7
34	Dendritic Polyampholyte-Assisted Formation of Functional Cellulose Nanofibril Materials. Biomacromolecules, 2020, 21, 2856-2863.	5.4	4
35	Acetylation and Sugar Composition Influence the (In)Solubility of Plant β-Mannans and Their Interaction with Cellulose Surfaces. ACS Sustainable Chemistry and Engineering, 2020, 8, 10027-10040.	6.7	25
36	Best Practice for Reporting Wet Mechanical Properties of Nanocellulose-Based Materials. Biomacromolecules, 2020, 21, 2536-2540.	5.4	30

#	Article	IF	CITATIONS
37	Synthesis of Unnatural αâ€Amino Acid Derivatives via Lightâ€Mediated Radical Decarboxylative Processes. Advanced Synthesis and Catalysis, 2020, 362, 2354-2359.	4.3	37
38	Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers. Biomacromolecules, 2020, 21, 1480-1488.	5.4	26
39	Development of mechanical properties of regenerated cellulose beads during drying as investigated by atomic force microscopy. Soft Matter, 2020, 16, 6457-6462.	2.7	10
40	Ambientâ€Dried, 3Dâ€Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers. Advanced Functional Materials, 2020, 30, 1909383.	14.9	92
41	Bactericidal surfaces prepared by femtosecond laser patterning and layer-by-layer polyelectrolyte coating. Journal of Colloid and Interface Science, 2020, 575, 286-297.	9.4	13
42	In Situ Modification of Regenerated Cellulose Beads: Creating All-Cellulose Composites. Industrial & Engineering Chemistry Research, 2020, 59, 2968-2976.	3.7	13
43	Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose. Advanced Materials, 2019, 31, e1902977.	21.0	253
44	Layer-by-Layer Assembly of High-Performance Electroactive Composites Using a Multiple Charged Small Molecule. Langmuir, 2019, 35, 10367-10373.	3.5	5
45	Controlling the Organization of PEDOT:PSS on Cellulose Structures. ACS Applied Polymer Materials, 2019, 1, 2342-2351.	4.4	40
46	Ion‧pecific Assembly of Strong, Tough, and Stiff Biofibers. Angewandte Chemie, 2019, 131, 18735-18742.	2.0	13
47	Ionâ€Specific Assembly of Strong, Tough, and Stiff Biofibers. Angewandte Chemie - International Edition, 2019, 58, 18562-18569.	13.8	47
48	Interfacial Polymerization of Cellulose Nanocrystal Polyamide Janus Nanocomposites with Controlled Architectures. ACS Macro Letters, 2019, 8, 1334-1340.	4.8	18
49	Experimental and Theoretical Evaluation of the Solubility/Insolubility of Spruce Xylan (Arabino) Tj ETQq1 1 0.784	314 rgBT / 5.4	Overlock 10
50	Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions—Suitable Substrates for Biointerfaces. Advanced Materials Interfaces, 2019, 6, 1900333.	3.7	26
51	Unidirectional Swelling of Dynamic Cellulose Nanofibril Networks: A Platform for Tunable Hydrogels and Aerogels with 3D Shapeability. Biomacromolecules, 2019, 20, 2406-2412.	5.4	36
52	Influence of Cellulose Charge on Bacteria Adhesion and Viability to PVAm/CNF/PVAm-Modified Cellulose Model Surfaces. Biomacromolecules, 2019, 20, 2075-2083.	5.4	34
53	Thermodynamics of the Water-Retaining Properties of Cellulose-Based Networks. Biomacromolecules, 2019, 20, 1603-1612.	5.4	20
54	lon-induced assemblies of highly anisotropic nanoparticles are governed by ion–ion correlation and specific ion effects. Nanoscale, 2019, 11, 3514-3520.	5.6	47

#	Article	IF	CITATIONS
55	Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils. Biomacromolecules, 2019, 20, 728-737.	5.4	24
56	Super Gas Barrier and Fire Resistance of Nanoplatelet/Nanofibril Multilayer Thin Films. Advanced Materials Interfaces, 2019, 6, 1801424.	3.7	44
57	Towards optimised size distribution in commercial microfibrillated cellulose: a fractionation approach. Cellulose, 2019, 26, 1565-1575.	4.9	38
58	Macroscopic cellulose probes for the measurement of polymer grafted surfaces. Cellulose, 2019, 26, 1467-1477.	4.9	7
59	Carbohydrate gel beads as model probes for quantifying non-ionic and ionic contributions behind the swelling of delignified plant fibers. Journal of Colloid and Interface Science, 2018, 519, 119-129.	9.4	19
60	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4, eaar3724.	10.3	336
61	Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties. Green Chemistry, 2018, 20, 2558-2570.	9.0	76
62	Interpenetrated Networks of Nanocellulose and Polyacrylamide with Excellent Mechanical and Absorptive Properties. Macromolecular Materials and Engineering, 2018, 303, 1700594.	3.6	8
63	All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale, 2018, 10, 4085-4095.	5.6	87
64	Tailoring flame-retardancy and strength of papers via layer-by-layer treatment of cellulose fibers. Cellulose, 2018, 25, 2691-2709.	4.9	25
65	Effect of Chemical Functionality on the Mechanical and Barrier Performance of Nanocellulose Films. ACS Applied Nano Materials, 2018, 1, 1959-1967.	5.0	20
66	Solubility of Softwood Hemicelluloses. Biomacromolecules, 2018, 19, 1245-1255.	5.4	37
67	Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets. Carbohydrate Polymers, 2018, 182, 1-7.	10.2	43
68	Insights into the EDC-mediated PEGylation of cellulose nanofibrils and their colloidal stability. Carbohydrate Polymers, 2018, 181, 871-878.	10.2	33
69	Copperâ€Plated Paper for Highâ€Performance Lithiumâ€ion Batteries. Small, 2018, 14, e1803313.	10.0	18
70	On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. Journal of Materials Chemistry A, 2018, 6, 19371-19380.	10.3	63
71	Genetically Engineered Mucoadhesive Spider Silk. Biomacromolecules, 2018, 19, 3268-3279.	5.4	11
72	Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength. ACS Sustainable Chemistry and Engineering, 2018, 6, 9951-9957.	6.7	18

#	Article	IF	CITATIONS
73	Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. ACS Nano, 2018, 12, 6378-6388.	14.6	359
74	Tuning the Nanoscale Properties of Phosphorylated Cellulose Nanofibril-Based Thin Films To Achieve Highly Fire-Protecting Coatings for Flammable Solid Materials. ACS Applied Materials & Interfaces, 2018, 10, 32543-32555.	8.0	31
75	Influence of Surface Charge Density and Morphology on the Formation of Polyelectrolyte Multilayers on Smooth Charged Cellulose Surfaces. Langmuir, 2017, 33, 968-979.	3.5	31
76	Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials. Nano Letters, 2017, 17, 1439-1447.	9.1	219
77	Bacterial adhesion to polyvinylamine-modified nanocellulose films. Colloids and Surfaces B: Biointerfaces, 2017, 151, 224-231.	5.0	19
78	Internal Structure of Isolated Cellulose I Fibril Aggregates in the Water Swollen State. ACS Symposium Series, 2017, , 91-112.	0.5	2
79	Layer by Layer-functionalized rice husk particles: A novel and sustainable solution for particleboard production. Materials Today Communications, 2017, 13, 92-101.	1.9	23
80	Formation of Colloidal Nanocellulose Glasses and Gels. Langmuir, 2017, 33, 9772-9780.	3.5	89
81	Ultrastrong and flame-resistant freestanding films from nanocelluloses, self-assembled using a layer-by-layer approach. Applied Materials Today, 2017, 9, 229-239.	4.3	31
82	Effect of cationic polyelectrolytes in contact-active antibacterial layer-by-layer functionalization. Holzforschung, 2017, 71, 649-658.	1.9	10
83	Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer-by-Layer Coatings. ACS Applied Materials & Interfaces, 2017, 9, 29082-29092.	8.0	99
84	Chemically modified cellulose micro- and nanofibrils as paper-strength additives. Cellulose, 2017, 24, 3883-3899.	4.9	41
85	The effect of different wear on superhydrophobic wax coatings. Nordic Pulp and Paper Research Journal, 2017, 32, 195-203.	0.7	2
86	Thermoelectric Polymers and their Elastic Aerogels. Advanced Materials, 2016, 28, 4556-4562.	21.0	157
87	Theoretical and Experimental Investigations of Polyelectrolyte Adsorption Dependence on Molecular Weight. Langmuir, 2016, 32, 5721-5730.	3.5	9
88	Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying. ACS Applied Materials & Interfaces, 2016, 8, 11682-11689.	8.0	86
89	Strong and tuneable wet adhesion with rationally designed layer-by-layer assembled triblock copolymer films. Nanoscale, 2016, 8, 18204-18211.	5.6	2
90	On the relationship between fibre composition and material properties following periodate oxidation and borohydride reduction of lignocellulosic fibres. Cellulose, 2016, 23, 3495-3510.	4.9	20

#	Article	IF	CITATIONS
91	An Organic Mixed Ion–Electron Conductor for Power Electronics. Advanced Science, 2016, 3, 1500305.	11.2	188
92	Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive. ACS Applied Materials & Interfaces, 2016, 8, 24161-24167.	8.0	17
93	Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process. Biomacromolecules, 2016, 17, 2801-2811.	5.4	68
94	Solid cellulose nanofiber based foams – Towards facile design of sustained drug delivery systems. Journal of Controlled Release, 2016, 244, 74-82.	9.9	62
95	Macro- and mesoporous nanocellulose beads for use in energy storage devices. Applied Materials Today, 2016, 5, 246-254.	4.3	47
96	Contact-active antibacterial aerogels from cellulose nanofibrils. Colloids and Surfaces B: Biointerfaces, 2016, 146, 415-422.	5.0	33
97	Two-Dimensional Aggregation and Semidilute Ordering in Cellulose Nanocrystals. Langmuir, 2016, 32, 442-450.	3.5	76
98	Pilot-scale papermaking using Layer-by-Layer treated fibres; comparison between the effects of beating and of sequential addition of polymeric additives. Nordic Pulp and Paper Research Journal, 2016, 31, 308-314.	0.7	3
99	Structural changes during swelling of highly charged cellulose fibres. Cellulose, 2015, 22, 2943-2953.	4.9	20
100	Trapping of Water Drops by Line-Shaped Defects on Superhydrophobic Surfaces. Langmuir, 2015, 31, 6367-6374.	3.5	5
101	Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nature Communications, 2015, 6, 7259.	12.8	246
102	Mechanisms Behind the Stabilizing Action of Cellulose Nanofibrils in Wet-Stable Cellulose Foams. Biomacromolecules, 2015, 16, 822-831.	5.4	77
103	Development of a Semicontinuous Spray Process for the Production of Superhydrophobic Coatings from Supercritical Carbon Dioxide Solutions. Industrial & Engineering Chemistry Research, 2015, 54, 1059-1067.	3.7	16
104	Nanometer-Thick Hyaluronic Acid Self-Assemblies with Strong Adhesive Properties. ACS Applied Materials & Interfaces, 2015, 7, 15143-15147.	8.0	6
105	Hierarchical wood cellulose fiber/epoxy biocomposites – Materials design of fiber porosity and nanostructure. Composites Part A: Applied Science and Manufacturing, 2015, 74, 60-68.	7.6	52
106	Contact-active antibacterial multilayers on fibres: a step towards understanding the antibacterial mechanism by increasing theÂfibre charge. Cellulose, 2015, 22, 2023-2034.	4.9	21
107	Vibrational Sum Frequency Spectroscopy on Polyelectrolyte Multilayers: Effect of Molecular Surface Structure on Macroscopic Wetting Properties. Langmuir, 2015, 31, 4435-4442.	3.5	4
108	Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials. Biomacromolecules, 2015, 16, 3399-3410.	5.4	267

LARS WÃ¥GBERG

#	Article	lF	CITATIONS
109	Flame-Retardant Paper from Wood Fibers Functionalized via Layer-by-Layer Assembly. ACS Applied Materials & Interfaces, 2015, 7, 23750-23759.	8.0	92
110	Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nordic Pulp and Paper Research Journal, 2014, 29, 176-184.	0.7	47
111	Structure and Properties of Layer-by-Layer Films from Combinations of Cellulose Nanofibers, Polyelectrolytes and Colloids. Materials and Energy, 2014, , 57-77.	0.1	0
112	Robust and Tailored Wet Adhesion in Biopolymer Thin Films. Biomacromolecules, 2014, 15, 4420-4428.	5.4	17
113	Nanometer Smooth, Macroscopic Spherical Cellulose Probes for Contact Adhesion Measurements. ACS Applied Materials & Interfaces, 2014, 6, 20928-20935.	8.0	25
114	New insights into the mechanisms behind the strengthening of lignocellulosic fibrous networks with polyamines. Cellulose, 2014, 21, 3941-3950.	4.9	13
115	Assembly of Debranched Xylan from Solution and on Nanocellulosic Surfaces. Biomacromolecules, 2014, 15, 924-930.	5.4	62
116	Aligned cellulose nanocrystals and directed nanoscale deposition of colloidal spheres. Cellulose, 2014, 21, 1591-1599.	4.9	17
117	Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes. ACS Nano, 2014, 8, 2467-2476.	14.6	325
118	Native and functionalized micrometre-sized cellulose capsules prepared by microfluidic flow focusing. RSC Advances, 2014, 4, 19061-19067.	3.6	16
119	Immunoselective Cellulose Nanospheres: A Versatile Platform for Nanotheranostics. ACS Macro Letters, 2014, 3, 1117-1120.	4.8	17
120	Ductile All-Cellulose Nanocomposite Films Fabricated from Core–Shell Structured Cellulose Nanofibrils. Biomacromolecules, 2014, 15, 2218-2223.	5.4	84
121	Superhydrophobic polymeric coatings produced by rapid expansion of supercritical solutions combined with electrostatic deposition (RESS-ED). Journal of Supercritical Fluids, 2014, 95, 610-617.	3.2	16
122	Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization. Polymer Chemistry, 2014, 5, 6076-6086.	3.9	62
123	Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils. Cellulose, 2014, 21, 323-333.	4.9	68
124	Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nature Communications, 2014, 5, 4018.	12.8	402
125	Lightweight, Highly Compressible, Noncrystalline Cellulose Capsules. Langmuir, 2014, 30, 7635-7644.	3.5	8
126	Towards a super-strainable paper using the Layer-by-Layer technique. Carbohydrate Polymers, 2014, 100, 218-224.	10.2	40

#	Article	IF	CITATIONS
127	Improved barrier films of cross-linked cellulose nanofibrils: a microscopy study. Green Materials, 2014, 2, 163-168.	2.1	17
128	Editorial: green nanocomposites. Green Materials, 2014, 2, 161-162.	2.1	1
129	Thermo-responsive nanofibrillated cellulose by polyelectrolyte adsorption. European Polymer Journal, 2013, 49, 2689-2696.	5.4	44
130	Polyelectrolyte Complexes for Tailoring of Wood Fibre Surfaces. Advances in Polymer Science, 2013, , 1-24.	0.8	4
131	Transparent Nanocellulosic Multilayer Thin Films on Polylactic Acid with Tunable Gas Barrier Properties. ACS Applied Materials & Interfaces, 2013, 5, 7352-7359.	8.0	137
132	Water Drop Friction on Superhydrophobic Surfaces. Langmuir, 2013, 29, 9079-9089.	3.5	61
133	The effect of superhydrophobic wetting state on corrosion protection – The AKD example. Journal of Colloid and Interface Science, 2013, 412, 56-64.	9.4	68
134	Lightweight and Strong Cellulose Materials Made from Aqueous Foams Stabilized by Nanofibrillated Cellulose. Biomacromolecules, 2013, 14, 503-511.	5.4	196
135	Tailoring the effect of antibacterial polyelectrolyte multilayers by choice of cellulosic fiber substrate. Holzforschung, 2013, 67, 573-578.	1.9	4
136	Dielectric properties of lignin and glucomannan as determined by spectroscopic ellipsometry and Lifshitz estimates of non-retarded Hamaker constants. Cellulose, 2013, 20, 1639-1648.	4.9	28
137	Hollow cellulose capsules from CO2 saturated cellulose solutions—their preparation and characterization. RSC Advances, 2013, 3, 2462.	3.6	24
138	Transparent and conductive paper from nanocellulose fibers. Energy and Environmental Science, 2013, 6, 513-518.	30.8	431
139	Nanocellulose Aerogels Functionalized by Rapid Layerâ€byâ€Layer Assembly for High Charge Storage and Beyond. Angewandte Chemie - International Edition, 2013, 52, 12038-12042.	13.8	196
140	Towards superhydrophobic coatings made by non-fluorinated polymers sprayed from a supercritical solution. Journal of Supercritical Fluids, 2013, 77, 134-141.	3.2	14
141	Preparation of dry ultra-porous cellulosic fibres: Characterization and possible initial uses. Carbohydrate Polymers, 2013, 92, 775-783.	10.2	31
142	Nanostructured paper for flexible energy and electronic devices. MRS Bulletin, 2013, 38, 320-325.	3.5	199
143	Flexible nano-paper-based positive electrodes for Li-ion batteries—Preparation process and properties. Nano Energy, 2013, 2, 794-800.	16.0	73
144	Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, 2013, 2, 138-145.	16.0	155

LARS WÃ¥GBERG

#	Article	IF	CITATIONS
145	A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter, 2013, 9, 1852-1863.	2.7	81
146	Evaluating Pore Space in Macroporous Ceramics with Waterâ€Based Porosimetry. Journal of the American Ceramic Society, 2013, 96, 1916-1922.	3.8	4
147	A new, robust method for measuring average fibre wall pore sizes in cellulose I rich plant fibre walls. Cellulose, 2013, 20, 623-631.	4.9	30
148	Polyelectrolyte Adsorption on Solid Surfaces: Theoretical Predictions and Experimental Measurements. Langmuir, 2013, 29, 12421-12431.	3.5	41
149	Nanocellulose Aerogels Functionalized by Rapid Layerâ€by‣ayer Assembly for High Charge Storage and Beyond. Angewandte Chemie, 2013, 125, 12260-12264.	2.0	26
150	Surface-initiated ring-opening polymerization from cellulose model surfaces monitored by a Quartz Crystal Microbalance. Soft Matter, 2012, 8, 512-517.	2.7	28
151	Biointeractive antibacterial fibres using polyelectrolyte multilayer modification. Cellulose, 2012, 19, 1731-1741.	4.9	30
152	Direct Adhesive Measurements between Wood Biopolymer Model Surfaces. Biomacromolecules, 2012, 13, 3046-3053.	5.4	23
153	Synthesis, adsorption and adhesive properties of a cationic amphiphilic block copolymer for use as compatibilizer in composites. European Polymer Journal, 2012, 48, 1195-1204.	5.4	20
154	Treatment of cellulose fibres with polyelectrolytes and wax colloids to create tailored highly hydrophobic fibrous networks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 415-421.	4.7	40
155	Physical Tuning of Cellulose-Polymer Interactions Utilizing Cationic Block Copolymers Based on PCL and Quaternized PDMAEMA. ACS Applied Materials & amp; Interfaces, 2012, 4, 6796-6807.	8.0	29
156	Adhesive Layer-by-Layer Films of Carboxymethylated Cellulose Nanofibril–Dopamine Covalent Bioconjugates Inspired by Marine Mussel Threads. ACS Nano, 2012, 6, 4731-4739.	14.6	96
157	Dynamics of moisture interaction with polyelectrolyte multilayers containing nanofibrillated cellulose. Nordic Pulp and Paper Research Journal, 2012, 27, 496-499.	0.7	5
158	AFM adhesion imaging for the comparison of polyelectrolyte complexes and polyelectrolyte multilayers. Soft Matter, 2012, 8, 8298.	2.7	8
159	Mechanosorptive creep in nanocellulose materials. Cellulose, 2012, 19, 809-819.	4.9	16
160	The use of polymeric amines to enhance the mechanical properties of lignocellulosic fibrous networks. Cellulose, 2012, 19, 1437-1447.	4.9	29
161	Tailoring the mechanical properties of starch-containing layer-by-layer films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 394, 14-22.	4.7	15
162	Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose, 2012, 19, 401-410.	4.9	330

LARS WÃ¥GBERG

#	Article	IF	CITATIONS
163	Investigation of the formation, structure and release characteristics of self-assembled composite films of cellulose nanofibrils and temperature responsive microgels. Soft Matter, 2011, 7, 1369-1377.	2.7	20
164	Design and characterization of cellulose nanofibril-based freestanding films prepared by layer-by-layer deposition technique. Soft Matter, 2011, 7, 3467.	2.7	44
165	Colloidal Stability of Aqueous Nanofibrillated Cellulose Dispersions. Langmuir, 2011, 27, 11332-11338.	3.5	265
166	Determination of Young's Modulus for Nanofibrillated Cellulose Multilayer Thin Films Using Buckling Mechanics. Biomacromolecules, 2011, 12, 961-969.	5.4	74
167	Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films. Journal of Colloid and Interface Science, 2011, 363, 566-572.	9.4	23
168	Bacterial-growth inhibiting properties of multilayers formed with modified polyvinylamine. Colloids and Surfaces B: Biointerfaces, 2011, 88, 115-120.	5.0	24
169	MECHANICAL PULPING: Influence of beating and chemical additives on residual stresses in paper. Nordic Pulp and Paper Research Journal, 2011, 26, 445-451.	0.7	10
170	Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose, 2010, 17, 187-198.	4.9	67
171	Diffusion-induced dimensional changes in papers and fibrillar films: influence of hydrophobicity and fibre-wall cross-linking. Cellulose, 2010, 17, 891-901.	4.9	15
172	Using jet mixing to prepare polyelectrolyte complexes: Complex properties and their interaction with silicon oxide surfaces. Journal of Colloid and Interface Science, 2010, 351, 88-95.	9.4	25
173	Polyelectrolyte Multilayers from Cationic and Anionic Starch: Influence of Charge Density and Salt Concentration on the Properties of the Adsorbed Layers. Starch/Staerke, 2010, 62, 102-114.	2.1	24
174	Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter, 2010, 6, 3298.	2.7	277
175	Thermoresponsive nanocomposites from multilayers of nanofibrillated cellulose and specially designed N-isopropylacrylamide based polymers. Soft Matter, 2010, 6, 342-352.	2.7	46
176	Effect of Cross-Linking Fiber Joints on the Tensile and Fracture Behavior of Paper. Industrial & Engineering Chemistry Research, 2010, 49, 6422-6431.	3.7	3
177	Interactions of Hydrophobically Modified Polyvinylamines: Adsorption Behavior at Charged Surfaces and the Formation of Polyelectrolyte Multilayers with Polyacrylic Acid. ACS Applied Materials & Interfaces, 2010, 2, 425-433.	8.0	21
178	Self-Organized Films from Cellulose I Nanofibrils Using the Layer-by-Layer Technique. Biomacromolecules, 2010, 11, 872-882.	5.4	142
179	The Influence of Geometry on Superhydrophobicity. ACS Symposium Series, 2009, , 250-273.	0.5	0
180	Antimicrobial activity of polyelectrolyte multilayer-treated cellulose films 2 nd ICC 2007, Tokyo, Japan, October 25–29, 2007. Holzforschung, 2009, 63, 33-39.	1.9	18

#	Article	IF	CITATIONS
181	7. On the Mechanisms Behind the Action of Wet Strength and Wet Strength Agents. , 2009, , 185-208.		3
182	Adsorption of polyallylamine to lignocellulosic fibres: effect of adsorption conditions on localisation of adsorbed polyelectrolyte and mechanical properties of resulting paper sheets. Cellulose, 2009, 16, 87-101.	4.9	17
183	Generation of superhydrophobic paper surfaces by a rapidly expanding supercritical carbon dioxide–alkyl ketene dimer solution. Journal of Supercritical Fluids, 2009, 49, 117-124.	3.2	92
184	Tailoring the chemistry of polyelectrolytes to control their adsorption on cellulosic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 340, 135-142.	4.7	6
185	Nanoscale Cellulose Films with Different Crystallinities and Mesostructures—Their Surface Properties and Interaction with Water. Langmuir, 2009, 25, 7675-7685.	3.5	321
186	Adhesive Interaction between Polyelectrolyte Multilayers of Polyallylamine Hydrochloride and Polyacrylic Acid Studied Using Atomic Force Microscopy and Surface Force Apparatus. Langmuir, 2009, 25, 2887-2894.	3.5	50
187	Design of Highly Oleophobic Cellulose Surfaces from Structured Silicon Templates. ACS Applied Materials & Interfaces, 2009, 1, 2443-2452.	8.0	80
188	Polyelectrolyte Adsorption on Thin Cellulose Films Studied with Reflectometry and Quartz Crystal Microgravimetry with Dissipation. Biomacromolecules, 2009, 10, 134-141.	5.4	45
189	Assessment of Antibacterial Properties of Polyvinylamine (PVAm) with Different Charge Densities and Hydrophobic Modifications. Biomacromolecules, 2009, 10, 1478-1483.	5.4	50
190	Adsorption Behavior and Adhesive Properties of Biopolyelectrolyte Multilayers Formed from Cationic and Anionic Starch. Biomacromolecules, 2009, 10, 1768-1776.	5.4	21
191	Influence of fibre–fibre joint properties on the dimensional stability of paper. Cellulose, 2008, 15, 515-525.	4.9	35
192	The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper. Cellulose, 2008, 15, 837-847.	4.9	56
193	Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces. Journal of Colloid and Interface Science, 2008, 317, 556-567.	9.4	49
194	Polyelectrolyte multilayers on wood fibers: Influence of molecular weight on layer properties and mechanical properties of papers from treated fibers. Journal of Colloid and Interface Science, 2008, 328, 233-242.	9.4	27
195	Patterning of surfaces with nanosized cellulosic fibrils using microcontact printing and a lift-off technique. Soft Matter, 2008, 4, 1158.	2.7	13
196	Buildup of Polyelectrolyte Multilayers of Polyethyleneimine and Microfibrillated Cellulose Studied by in Situ Dual-Polarization Interferometry and Quartz Crystal Microbalance with Dissipation. Langmuir, 2008, 24, 2509-2518.	3.5	113
197	The Build-Up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes. Langmuir, 2008, 24, 784-795.	3.5	742
198	Adsorption of Highly Charged Polyelectrolytes onto an Oppositely Charged Porous Substrate. Langmuir, 2008, 24, 7857-7866.	3.5	29

#	Article	IF	CITATIONS
199	Adsorption Kinetics of Cationic Polyelectrolytes Studied with Stagnation Point Adsorption Reflectometry and Quartz Crystal Microgravimetry. Langmuir, 2008, 24, 7329-7337.	3.5	45
200	Diffusion of Cationic Polyelectrolytes into Cellulosic Fibers. Langmuir, 2008, 24, 10797-10806.	3.5	59
201	The Physical Action of Cellulases Revealed by a Quartz Crystal Microbalance Study Using Ultrathin Cellulose Films and Pure Cellulases. Biomacromolecules, 2008, 9, 249-254.	5.4	94
202	Adsorption of Low Charge Density Polyelectrolytes to an Oppositely Charged Porous Substrate. Langmuir, 2008, 24, 6585-6594.	3.5	25
203	The Link Between the Fiber Contact Zone and the Physical Properties of Paper: A Way to Control Paper Properties. Journal of Composite Materials, 2007, 41, 1619-1633.	2.4	30
204	Cellulose Thin Films:Â Degree of Cellulose Ordering and Its Influence on Adhesion. Biomacromolecules, 2007, 8, 912-919.	5.4	85
205	Smooth Model Surfaces from Lignin Derivatives. II. Adsorption of Polyelectrolytes and PECs Monitored by QCM-D. Langmuir, 2007, 23, 3737-3743.	3.5	33
206	Hyperbranched Polymers as a Fixing Agent for Dissolved and Colloidal Substances on Fiber and SIO2Surfaces. Industrial & Engineering Chemistry Research, 2007, 46, 2212-2219.	3.7	16
207	Kinetics of sequential adsorption of polyelectrolyte multilayers on pulp fibres and their effect on paper strength. Nordic Pulp and Paper Research Journal, 2007, 22, 258-266.	0.7	14
208	Influence of polymeric additives on short-time creep of paper. Nordic Pulp and Paper Research Journal, 2007, 22, 217-227.	0.7	6
209	The use of polyelectrolyte complexes (PEC) as strength additives for different pulps used for production of fine paper. Nordic Pulp and Paper Research Journal, 2007, 22, 210-216.	0.7	21
210	Preparation of electrically conducting cellulose fibres utilizing polyelectrolyte multilayers of poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate) and poly(allyl amine). European Polymer Journal, 2007, 43, 4075-4091.	5.4	53
211	The role of polymer compatibility in the adhesion between surfaces saturated with modified dextrans. Journal of Colloid and Interface Science, 2007, 310, 312-320.	9.4	3
212	New insights into the structure of polyelectrolyte complexes. Journal of Colloid and Interface Science, 2007, 312, 237-246.	9.4	31
213	Wettability changes in the formation of polymeric multilayers on cellulose fibres and their influence on wet adhesion. Journal of Colloid and Interface Science, 2007, 314, 1-9.	9.4	45
214	Fibre surface modifications of market pulp by consecutive treatments with cationic and anionic starch. Nordic Pulp and Paper Research Journal, 2007, 22, 244-248.	0.7	4
215	Surface Modification of Wood Fibers Using the Polyelectrolyte Multilayer Technique:Â Effects on Fiber Joint and Paper Strength Properties. Industrial & Engineering Chemistry Research, 2006, 45, 5279-5286.	3.7	64
216	Surface Forces Measurements of Spin-Coated Cellulose Thin Films with Different Crystallinity. Langmuir, 2006, 22, 3154-3160.	3.5	66

#	Article	IF	CITATIONS
217	Tailoring of fibre/fibre joints in order to avoid the negative impacts of drying on paper properties. Nordic Pulp and Paper Research Journal, 2006, 21, 411-418.	0.7	18
218	Formation of polyelectrolyte multilayers on fibres: Influence on wettability and fibre/fibre interaction. Journal of Colloid and Interface Science, 2006, 296, 396-408.	9.4	38
219	Friction and forces between cellulose model surfaces: A comparison. Journal of Colloid and Interface Science, 2006, 303, 117-123.	9.4	79
220	Visco-elastic and adhesive properties of adsorbed polyelectrolyte multilayers determined in situ with QCM-D and AFM measurements. Journal of Colloid and Interface Science, 2005, 292, 29-37.	9.4	162
221	The influence on paper strength properties when building multilayers of weak polyelectrolytes onto wood fibres. Journal of Colloid and Interface Science, 2005, 292, 38-45.	9.4	86
222	Determination of Fibre Pore Structure: Influence of Salt, pH and Conventional Wet Strength Resins. Cellulose, 2005, 12, 253-265.	4.9	11
223	Application of polymeric multilayers of starch onto wood fibres to enhance strength properties of paper. Nordic Pulp and Paper Research Journal, 2005, 20, 270-276.	0.7	41
224	Influence of polyelectrolyte complexes on the strength properties of papers from unbleached kraft pulps with different yields. Nordic Pulp and Paper Research Journal, 2005, 20, 36-42.	0.7	35
225	Wetting of Structured Hydrophobic Surfaces by Water Droplets. Langmuir, 2005, 21, 12235-12243.	3.5	27
226	A new technique for evaluating ink–cellulose interactions: initial studies of the influence of surface energy and surface roughness. Journal of Adhesion Science and Technology, 2005, 19, 783-798.	2.6	19
227	Morphology of Modified Regenerated Model Cellulose II Surfaces Studied by Atomic Force Microscopy:Â Effect of Carboxymethylation and Heat Treatment. Biomacromolecules, 2005, 6, 1586-1591.	5.4	62
228	Adsorption of bilayers and multilayers of cationic and anionic co-polymers of acrylamide on silicon oxide. Journal of Colloid and Interface Science, 2004, 274, 480-488.	9.4	43
229	Formation of multilayers on silica surfaces of a cationic polyelectrolyte and dissolved and colloidal substances originating from mechanical wood pulp-Adsorption and influence on adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 237, 33-47.	4.7	11
230	Adsorbed layer structure of a weak polyelectrolyte studied by colloidal probe microscopy and QCM-D as a function of pH and ionic strength. Physical Chemistry Chemical Physics, 2004, 6, 2379-2386.	2.8	56
231	Direct Measurement of Attractive van der Waals' Forces between Regenerated Cellulose Surfaces in an Aqueous Environment. Journal of the American Chemical Society, 2004, 126, 13930-13931.	13.7	120
232	Influence of electrostatic interactions on fibre/fibre joint and paper strength. Nordic Pulp and Paper Research Journal, 2004, 19, 440-447.	0.7	15
233	The porous structure of pulp fibres with different yields and its influence on paper strength. Cellulose, 2003, 10, 111-123.	4.9	53
234	Polyelectrolyte complexes for surface modification of wood fibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 213, 15-25.	4.7	54

#	Article	IF	CITATIONS
235	Polyelectrolyte complexes for surface modification of wood fibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 218, 137-149.	4.7	86
236	Adsorption and flocculation behavior of cationic polyacrylamide and colloidal silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 219, 161-172.	4.7	98
237	Swelling of Model Films of Cellulose Having Different Charge Densities and Comparison to the Swelling Behavior of Corresponding Fibers. Langmuir, 2003, 19, 7895-7903.	3.5	68
238	Aggregation of Lignin Derivatives under Alkaline Conditions. Kinetics and Aggregate Structure. Langmuir, 2002, 18, 2859-2865.	3.5	113
239	Title is missing!. Cellulose, 2002, 9, 127-137.	4.9	15
240	Kinetics of Polyelectrolyte Adsorption on Cellulosic Fibers. Langmuir, 2001, 17, 1096-1103.	3.5	90
241	Aggregation of kraft lignin derivatives under conditions relevant to the process, part I: phase behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 194, 85-96.	4.7	74
242	Application of the JKR Method to the Measurement of Adhesion to Langmuir–Blodgett Cellulose Surfaces. Journal of Colloid and Interface Science, 2000, 230, 441-447.	9.4	48
243	New equipment for detection of polymer induced flocculation of cellulosic fibres by using image analysis — application to microparticle systems. Chemical Engineering Journal, 2000, 80, 51-63.	12.7	12
244	Swelling behaviour of succinylated fibers. Cellulose, 2000, 7, 67-86.	4.9	18
245	The role of surface polymer compability in the formation of fiber/fiber bonds in paper. Nordic Pulp and Paper Research Journal, 2000, 15, 400-406.	0.7	22
246	Polyelectrolyte adsorption onto cellulose fibres – A review. Nordic Pulp and Paper Research Journal, 2000, 15, 586-597.	0.7	119
247	Spreading of droplets of different liquids on specially structured papers. Nordic Pulp and Paper Research Journal, 2000, 15, 598-606.	0.7	15
248	The use of stagnation point adsorption reflectometry to study molecular interactions relevant to papermaking chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 3-15.	4.7	32
249	Adsorption of cationic starch on fibres from mechanical pulps. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 984-993.	0.9	28
250	An extended model for the estimation of flocculation efficiency factors in multicomponent flocculant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 25-38.	4.7	55
251	Flocculation of cellulosic fibres following addition of cationic starch. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 105, 199-209.	4.7	23
252	The action of cationic polymers in the fixation of dissolved and colloidal substances Part 2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 104, 169-184.	4.7	16

#	Article	IF	CITATIONS
253	On the mechanism behind wet strength development in papers containing wet strength resins. Nordic Pulp and Paper Research Journal, 1993, 8, 53-58.	0.7	44
254	Adsorption of cationic potato starch on cellulosic fibres. Nordic Pulp and Paper Research Journal, 1993, 8, 399-404.	0.7	50
255	The action of cationic polyelectrolytes used for the fixation of dissolved and colloidal substances. Nordic Pulp and Paper Research Journal, 1991, 6, 127-135.	0.7	23
256	Exchange of cationic polyacrylamides adsorbed on monodisperse polystyrene latex and cellulose fibers: Effect of molecular weight. Journal of Colloid and Interface Science, 1990, 134, 229-234.	9.4	26
257	Adsorption of cationic polyacrylamides onto monodisperse polystyrene latices and cellulose fiber: Effect of molecular weight and charge density of cationic polyacrylamides. Journal of Colloid and Interface Science, 1990, 134, 219-228.	9.4	87
258	Hydrolysis of cationic polyacrylamides. Journal of Applied Polymer Science, 1989, 38, 297-304.	2.6	46
259	Adsorption kinetics for cationic polyelectrolytes onto pulp fibers in turbulent flow. Colloids and Surfaces, 1989, 40, 115-124.	0.9	34
260	Kinetics of adsorption and ion-exchange reactions during adsorption of cationic polyelectrolytes onto cellulosic fibers. Colloids and Surfaces, 1988, 31, 119-124.	0.9	10
261	Kinetics of adsorpton and ion-exchange rections during adsorption of cationic polyelectrolytes onto cellulosic fibers. Journal of Colloid and Interface Science, 1988, 123, 287-295.	9.4	57
262	Kinetics of polymer-induced flocculation of cellulosic fibers in turbulent flow. Colloids and Surfaces, 1987, 27, 29-42.	0.9	19
263	On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids and Surfaces, 1987, 27, 163-173.	0.9	102
264	On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids and Surfaces, 1987, 27, 163-173.	0.9	133
265	Polyelectrolytes adsorbed on the surface of cellulosic materials. Journal of Colloid and Interface Science, 1986, 111, 537-543.	9.4	90
266	Tunable Adhesion and Interfacial Structure of Layerâ€by‣ayer Assembled Block coâ€polymer Micelle and Polyelectrolyte Coatings. Advanced Materials Interfaces, 0, , 2200065.	3.7	3
267	Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials. ACS Applied Nano Materials, 0, , .	5.0	2