
Yukiko Kamiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575715/publications.pdf Version: 2024-02-01

YUKIKO KAMINA

#	Article	IF	CITATIONS
1	Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties. Chemical Communications, 2022, 58, 3993-4004.	4.1	15
2	Development and Modification of Pre-miRNAs with a FRET Dye Pair for the Intracellular Visualization of Processing Intermediates That Are Generated in Cells. Sensors, 2021, 21, 1785.	3.8	2
3	Investigation of Strand-Selective Interaction of SNA-Modified siRNA with AGO2-MID. International Journal of Molecular Sciences, 2020, 21, 5218.	4.1	4
4	Intrastrand backbone-nucleobase interactions stabilize unwound right-handed helical structures of heteroduplexes of L-aTNA/RNA and SNA/RNA. Communications Chemistry, 2020, 3, .	4.5	9
5	Designer Biopolymers: Self-Assembling Proteins and Nucleic Acids. International Journal of Molecular Sciences, 2020, 21, 3276.	4.1	0
6	Improved secretion of glycoproteins using an N-glycan-restricted passport sequence tag recognized by cargo receptor. Nature Communications, 2020, 11, 1368.	12.8	15
7	A triplex-forming linear probe for sequence-specific detection of duplex DNA with high sensitivity and affinity. Chemical Communications, 2020, 56, 5358-5361.	4.1	10
8	Incorporation of Pseudoâ€complementary Bases 2,6â€Diaminopurine and 2â€Thiouracil into Serinol Nucleic Acid (SNA) to Promote SNA/RNA Hybridization. Chemistry - an Asian Journal, 2020, 15, 1266-1271.	3.3	10
9	Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 216-221.	0.8	8
10	Development of Visible‣ightâ€Responsive RNA Scissors Based on a 10–23 DNAzyme. ChemBioChem, 2018, 1305-1311.	19. 2.6	25
11	The DNA Duplex as an Aqueous One-Dimensional Soft Crystal Scaffold for Photochemistry. Bulletin of the Chemical Society of Japan, 2018, 91, 1739-1748.	3.2	32
12	Bifacial Nucleobases for Hexaplex Formation in Aqueous Solution. Journal of the American Chemical Society, 2018, 140, 8456-8462.	13.7	21
13	Design of photofunctional oligonucleotides by copolymerization of natural nucleobases with base surrogates prepared from acyclic scaffolds. Polymer Journal, 2017, 49, 279-289.	2.7	15
14	DNA Microcapsule for Photoâ€Triggered Drug Release Systems. ChemMedChem, 2017, 12, 2016-2021.	3.2	19
15	Introduction of 2,6â€Diaminopurines into Serinol Nucleic Acid Improves Antiâ€miRNA Performance. ChemBioChem, 2017, 18, 1917-1922.	2.6	24
16	Strand-invading linear probe combined with unmodified PNA. Bioorganic and Medicinal Chemistry, 2016, 24, 4129-4137.	3.0	10
17	Dynamics of Inter-DNA Chain Interaction of Photoresponsive DNA. Journal of the American Chemical Society, 2016, 138, 9001-9004.	13.7	25
18	lsotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous solution. Scientific Reports, 2016, 5, 17900.	3.3	9

Υυκικό Κάμιγα

#	Article	IF	CITATIONS
19	Preâ€organized Guide RNA in the Cas9 Complex Is Ready for the Selection of Target Doubleâ€Stranded DNA. ChemBioChem, 2015, 16, 2273-2275.	2.6	3
20	Ultrasensitive Molecular Beacon Designed with Totally Serinol Nucleic Acid (SNA) for Monitoring mRNA in Cells. ChemBioChem, 2015, 16, 1298-1301.	2.6	31
21	Highly Sensitive and Robust Linear Probe for Detection of mRNA in Cells. Angewandte Chemie - International Edition, 2015, 54, 4315-4319.	13.8	30
22	Synthetic Gene Involving Azobenzene-Tethered T7 Promoter for the Photocontrol of Gene Expression by Visible Light. ACS Synthetic Biology, 2015, 4, 365-370.	3.8	49
23	Conformational Dynamics of Oligosaccharides Characterized by Paramagnetism-Assisted NMR Spectroscopy in Conjunction with Molecular Dynamics Simulation. Advances in Experimental Medicine and Biology, 2015, 842, 217-230.	1.6	16
24	Molecular design of Cy3 derivative for highly sensitive in-stem molecular beacon and its application to the wash-free FISH. Bioorganic and Medicinal Chemistry, 2015, 23, 1758-1762.	3.0	15
25	Redoxâ€coupled structural changes of the catalytic <i>a</i> ′ domain of protein disulfide isomerase. FEBS Letters, 2015, 589, 2690-2694.	2.8	6
26	Terminus-free siRNA prepared by photo-crosslinking activated via slicing by Ago2. Biomaterials Science, 2015, 3, 1534-1538.	5.4	17
27	Forcible destruction of severely misfolded mammalian glycoproteins by the non-glycoprotein ERAD pathway. Journal of Cell Biology, 2015, 211, 775-784.	5.2	39
28	EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. Journal of Cell Biology, 2014, 206, 347-356.	5.2	131
29	Enhancement of Stability and Activity of siRNA by Terminal Substitution with Serinol Nucleic Acid (SNA). ChemBioChem, 2014, 15, 2549-2555.	2.6	33
30	Light-Driven DNA Nanomachine with a Photoresponsive Molecular Engine. Accounts of Chemical Research, 2014, 47, 1663-1672.	15.6	226
31	Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Current Opinion in Structural Biology, 2014, 26, 44-53.	5.7	23
32	<i>De Novo</i> Design of Functional Oligonucleotides with Acyclic Scaffolds. Chemical Record, 2014, 14, 1055-1069.	5.8	17
33	Development of an ultra-sensitive fluorescent probe composed of artificial nucleic acid for the detection of mRNA in cell. , 2014, , .		0
34	Selective labeling of mature RISC using a siRNA carrying fluorophore–quencher pair. Chemical Science, 2013, 4, 4016.	7.4	23
35	Application of Metabolic 13C Labeling in Conjunction with High-Field Nuclear Magnetic Resonance Spectroscopy for Comparative Conformational Analysis of High Mannose-Type Oligosaccharides. Biomolecules, 2013, 3, 108-123.	4.0	37
36	The Unfolded Protein Response Transducer ATF6 Represents a Novel Transmembrane-type Endoplasmic Reticulum-associated Degradation Substrate Requiring Both Mannose Trimming and SEL1L Protein. Journal of Biological Chemistry, 2013, 288, 31517-31527.	3.4	68

Υυκικό Κάμιγα

#	Article	IF	CITATIONS
37	Endoplasmic reticulum lectin <scp>XTP</scp> 3â€B inhibits endoplasmic reticulumâ€associated degradation of a misfolded α1â€antitrypsin variant. FEBS Journal, 2013, 280, 1563-1575.	4.7	33
38	Ero1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases. Journal of Cell Biology, 2013, 202, 861-874.	5.2	131
39	Terminal Spin Labeling of a High-mannose-type Oligosaccharide for Quantitative NMR Analysis of Its Dynamic Conformation. Chemistry Letters, 2013, 42, 544-546.	1.3	25
40	Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1327-1337.	2.4	60
41	NMR characterization of the interaction between the PUB domain of peptide: <i>N</i> â€glycanase and ubiquitin″ike domain of HR23. FEBS Letters, 2012, 586, 1141-1146.	2.8	18
42	Structural and Molecular Basis of Carbohydrate-Protein Interaction Systems as Potential Therapeutic Targets. Current Pharmaceutical Design, 2011, 17, 1672-1684.	1.9	43
43	Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain. Journal of Biomolecular NMR, 2011, 50, 397-401.	2.8	36
44	Structural basis for the cooperative interplay between the two causative gene products of combined factor V and factor VIII deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4034-4039.	7.1	46
45	EDEM1 accelerates the trimming of Â1,2-linked mannose on the C branch of N-glycans. Glycobiology, 2010, 20, 567-575.	2.5	115
46	The role of MRH domain-containing lectins in ERAD. Glycobiology, 2010, 20, 651-660.	2.5	69
47	Mannose 6-Phosphate Receptor Homology Domain-Containing Lectins in Mammalian Endoplasmic Reticulum-Associated Degradation. Methods in Enzymology, 2010, 480, 181-197.	1.0	5
48	Redox-Dependent Domain Rearrangement of Protein Disulfide Isomerase Coupled with Exposure of Its Substrate-Binding Hydrophobic Surface. Journal of Molecular Biology, 2010, 396, 361-374.	4.2	58
49	Human OS-9, a Lectin Required for Glycoprotein Endoplasmic Reticulum-associated Degradation, Recognizes Mannose-trimmed N-Glycans. Journal of Biological Chemistry, 2009, 284, 17061-17068.	3.4	170
50	Sugar-binding activity of the MRH domain in the ER Â-glucosidase II Â subunit is important for efficient glucose trimming. Glycobiology, 2009, 19, 1127-1135.	2.5	50
51	Structural and Molecular Basis for Intracellular Glycoprotein-Fate Determination through Sugar Recognition. Seibutsu Butsuri, 2009, 49, 062-069.	0.1	Ο
52	Defining the Glycan Destruction Signal for Endoplasmic Reticulum-Associated Degradation. Molecular Cell, 2008, 32, 870-877.	9.7	211
53	920ÂMHz ultra-high field NMR approaches to structural glycobiology. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 619-625.	2.4	40
54	Molecular Basis of Sugar Recognition by the Human L-type Lectins ERGIC-53, VIPL, and VIP36. Journal of Biological Chemistry, 2008, 283, 1857-1861.	3.4	131

Υυκικό Καμιγά

#	Article	IF	CITATIONS
55	Deletion of 3 residues from the C-terminus of MCFD2 affects binding to ERGIC-53 and causes combined factor V and factor VIII deficiency. Blood, 2008, 111, 1299-1301.	1.4	20
56	Structural views of glycoprotein-fate determination in cells. Glycobiology, 2007, 17, 1031-1044.	2.5	53
57	Fbs1 protects the malfolded glycoproteins from the attack of peptide:N-glycanase. Biochemical and Biophysical Research Communications, 2007, 362, 712-716.	2.1	22
58	Sugar Recognition by Intracellular Lectins That Determine the Fates of Glycoproteins. Trends in Glycoscience and Glycotechnology, 2006, 18, 231-244.	0.1	11
59	Sugar-binding Properties of VIP36, an Intracellular Animal Lectin Operating as a Cargo Receptor. Journal of Biological Chemistry, 2005, 280, 37178-37182.	3.4	80