Julie A Law

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis. Nature Communications, 2022, 13, 244.	12.8	35
2	AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nature Communications, 2020, 11, 4374.	12.8	49
3	Directions for research and training in plant omics: Big Questions and Big Data. Plant Direct, 2019, 3, e00133.	1.9	47
4	Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature, 2019, 575, 699-703.	27.8	343
5	SOG1 activator and MYB3R repressors regulate a complex DNA damage network in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12453-E12462.	7.1	115
6	Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nature Genetics, 2018, 50, 865-873.	21.4	103
7	The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status. ELife, 2017, 6, .	6.0	18
8	RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules. Current Opinion in Plant Biology, 2015, 27, 154-164.	7.1	77
9	Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature, 2013, 498, 385-389.	27.8	310
10	DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nature Structural and Molecular Biology, 2012, 19, 870-875.	8.2	182
11	A dual flip-out mechanism for 5mC recognition by the <i>Arabidopsis</i> SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. Genes and Development, 2011, 25, 137-152.	5.9	108
12	Identification of genes required for de novo DNA methylation in Arabidopsis. Epigenetics, 2011, 6, 344-354.	2.7	64
13	SHH1, a Homeodomain Protein Required for DNA Methylation, As Well As RDR2, RDM4, and Chromatin Remodeling Factors, Associate with RNA Polymerase IV. PLoS Genetics, 2011, 7, e1002195.	3.5	177
14	A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis. Current Biology, 2010, 20, 951-956.	3.9	195
15	Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 2010, 11, 204-220.	16.3	3,201
16	SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18557-18562.	7.1	147
17	Dynamic DNA Methylation. Science, 2009, 323, 1568-1569.	12.6	51
18	Trypanosoma brucei RNA editing protein TbMP42 (band VI) is crucial for the endonucleolytic cleavages but not the subsequent steps of U-deletion and U-insertion. Rna. 2008, 14, 1187-1200	3.5	18

Julie A Law

#	Article	IF	CITATIONS
19	SRA-Domain Proteins Required for DRM2-Mediated De Novo DNA Methylation. PLoS Genetics, 2008, 4, e1000280.	3.5	141
20	In Trypanosoma brucei RNA Editing, TbMP18 (Band VII) Is Critical for Editosome Integrity and for both Insertional and Deletional Cleavages. Molecular and Cellular Biology, 2007, 27, 777-787.	2.3	24
21	T. brucei RNA editing: Action of the U-insertional TUTase within a U-deletion cycle. Rna, 2006, 12, 476-487.	3.5	8
22	In Trypanosoma brucei RNA Editing, Band II Enables Recognition Specifically at Each Step of the U Insertion Cycle. Molecular and Cellular Biology, 2005, 25, 2785-2794.	2.3	19