Peter Amendt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575653/publications.pdf Version: 2024-02-01

DETED AMENINT

#	Article	IF	CITATIONS
1	Mechanisms of shape transfer and preheating in indirect-drive double shell collisions. Physics of Plasmas, 2022, 29, .	1.9	7
2	Hydroscaling indirect-drive implosions on the National Ignition Facility. Physics of Plasmas, 2022, 29, .	1.9	4
3	Entropy generation from hydrodynamic mixing in inertial confinement fusion indirect-drive targets. Physics of Plasmas, 2021, 28, .	1.9	6
4	Reaching 30% energy coupling efficiency for a high-density-carbon capsule in a gold rugby hohlraum on NIF. Nuclear Fusion, 2021, 61, 086028.	3.5	4
5	Symmetry tuning and high energy coupling for an Al capsule in a Au rugby hohlraum on NIF. Physics of Plasmas, 2020, 27, .	1.9	5
6	Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators. Physics of Plasmas, 2020, 27, .	1.9	11
7	High-volume and -adiabat capsule ("HVACâ€) ignition: Lowered fuel compression requirements using advanced Hohlraums. Physics of Plasmas, 2020, 27, 122708.	1.9	3
8	Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum. Physics of Plasmas, 2019, 26, .	1.9	25
9	Experimental study of energy transfer in double shell implosions. Physics of Plasmas, 2019, 26, .	1.9	32
10	Enhanced energy coupling for indirectly driven inertial confinement fusion. Nature Physics, 2019, 15, 138-141.	16.7	32
11	Design considerations for indirectly driven double shell capsules. Physics of Plasmas, 2018, 25, .	1.9	65
12	Improving ICF implosion performance with alternative capsule supports. Physics of Plasmas, 2017, 24, .	1.9	54
13	lon separation effects in mixed-species ablators for inertial-confinement-fusion implosions. Physical Review E, 2015, 91, 023103.	2.1	8
14	of Plasmas, 2015, 22, 056318.	1.9	80
15	High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum. Physics of Plasmas, 2015, 22, 040703.	1.9	12
16	Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration. Physics of Plasmas, 2014, 21, .	1.9	36
17	Thomson scattering diagnostic for the measurement of ion species fraction. Review of Scientific Instruments, 2012, 83, 10E323.	1.3	19
18	Amendt, Bellei, and Wilks Reply:. Physical Review Letters, 2012, 109, .	7.8	3

Peter Amendt

#	Article	IF	CITATIONS
19	Plasma Adiabatic Lapse Rate. Physical Review Letters, 2012, 109, 075002.	7.8	23
20	Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks. Physics of Plasmas, 2012, 19, .	1.9	101
21	The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion database. Physics of Plasmas, 2011, 18, .	1.9	60
22	Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures. Physical Review Letters, 2010, 105, 115005.	7.8	84
23	An indirect-drive non-cryogenic double-shell path to 1ï‰ Nd-laser hybrid inertial fusion–fission energy. Nuclear Fusion, 2010, 50, 105006.	3.5	18
24	Effects of Ionization Gradients on Inertial-Confinement-Fusion Capsule Hydrodynamic Stability. Physical Review Letters, 2008, 101, 115004.	7.8	4
25	Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums. Physics of Plasmas, 2007, 14, 056312.	1.9	80
26	Bell-Plesset effects for an accelerating interface with contiguous density gradients. Physics of Plasmas, 2006, 13, 042702.	1.9	18
27	Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs. Physics of Plasmas, 2004, 11, 1552-1568.	1.9	61
28	The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Physics of Plasmas, 2004, 11, 339-491.	1.9	1,618
29	Modified Bell–Plesset effect with compressibility: Application to double-shell ignition target designs. Physics of Plasmas, 2003, 10, 820-829.	1.9	62
30	Hohlraum-Driven High-Convergence Implosion Experiments with Multiple Beam Cones on the Omega Laser Facility. Physical Review Letters, 2002, 89, 165001.	7.8	29
31	Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis. Physics of Plasmas, 2002, 9, 2221-2233.	1.9	127
32	Threeâ€dimensional simulations of Nova high growth factor capsule implosion experiments. Physics of Plasmas, 1996, 3, 2070-2076.	1.9	143