Peter Amendt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575653/publications.pdf

Version: 2024-02-01

32	2,834	18	32
papers	citations	h-index	g-index
32	32	32	1513
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Physics of Plasmas, 2004, 11, 339-491.	1.9	1,618
2	Threeâ€dimensional simulations of Nova high growth factor capsule implosion experiments. Physics of Plasmas, 1996, 3, 2070-2076.	1.9	143
3	Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis. Physics of Plasmas, 2002, 9, 2221-2233.	1.9	127
4	Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks. Physics of Plasmas, 2012, 19, .	1.9	101
5	Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures. Physical Review Letters, 2010, 105, 115005.	7.8	84
6	Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums. Physics of Plasmas, 2007, 14, 056312.	1.9	80
7	of Plasmas, 2015, 22, 056318.	1.9	80
8	Design considerations for indirectly driven double shell capsules. Physics of Plasmas, 2018, 25, .	1.9	65
9	Modified Bell–Plesset effect with compressibility: Application to double-shell ignition target designs. Physics of Plasmas, 2003, 10, 820-829.	1.9	62
10	Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs. Physics of Plasmas, 2004, 11, 1552-1568.	1.9	61
11	The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion database. Physics of Plasmas, 2011, 18, .	1.9	60
12	Improving ICF implosion performance with alternative capsule supports. Physics of Plasmas, 2017, 24, .	1.9	54
13	Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration. Physics of Plasmas, 2014, 21, .	1.9	36
14	Experimental study of energy transfer in double shell implosions. Physics of Plasmas, 2019, 26, .	1.9	32
15	Enhanced energy coupling for indirectly driven inertial confinement fusion. Nature Physics, 2019, 15, 138-141.	16.7	32
16	Hohlraum-Driven High-Convergence Implosion Experiments with Multiple Beam Cones on the Omega Laser Facility. Physical Review Letters, 2002, 89, 165001.	7.8	29
17	Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum. Physics of Plasmas, 2019, 26, .	1.9	25
18	Plasma Adiabatic Lapse Rate. Physical Review Letters, 2012, 109, 075002.	7.8	23

#	Article	IF	Citations
19	Thomson scattering diagnostic for the measurement of ion species fraction. Review of Scientific Instruments, 2012, 83, 10E323.	1.3	19
20	Bell-Plesset effects for an accelerating interface with contiguous density gradients. Physics of Plasmas, 2006, 13, 042702.	1.9	18
21	An indirect-drive non-cryogenic double-shell path to 1ω Nd-laser hybrid inertial fusion–fission energy. Nuclear Fusion, 2010, 50, 105006.	3 . 5	18
22	High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum. Physics of Plasmas, 2015, 22, 040703.	1.9	12
23	Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators. Physics of Plasmas, 2020, 27, .	1.9	11
24	Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions. Physical Review E, 2015, 91, 023103.	2.1	8
25	Mechanisms of shape transfer and preheating in indirect-drive double shell collisions. Physics of Plasmas, 2022, 29, .	1.9	7
26	Entropy generation from hydrodynamic mixing in inertial confinement fusion indirect-drive targets. Physics of Plasmas, 2021, 28, .	1.9	6
27	Symmetry tuning and high energy coupling for an Al capsule in a Au rugby hohlraum on NIF. Physics of Plasmas, 2020, 27, .	1.9	5
28	Effects of Ionization Gradients on Inertial-Confinement-Fusion Capsule Hydrodynamic Stability. Physical Review Letters, 2008, 101, 115004.	7.8	4
29	Reaching 30% energy coupling efficiency for a high-density-carbon capsule in a gold rugby hohlraum on NIF. Nuclear Fusion, 2021, 61, 086028.	3.5	4
30	Hydroscaling indirect-drive implosions on the National Ignition Facility. Physics of Plasmas, 2022, 29, .	1.9	4
31	Amendt, Bellei, and Wilks Reply:. Physical Review Letters, 2012, 109, .	7.8	3
32	High-volume and -adiabat capsule ("HVACâ€) ignition: Lowered fuel compression requirements using advanced Hohlraums. Physics of Plasmas, 2020, 27, 122708.	1.9	3