
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro Evaluation of Programmed Cell Death in the Immune System of Pacific Oyster Crassostrea gigas by the Effect of Marine Toxins. Frontiers in Immunology, 2021, 12, 634497.	4.8	10
2	A Low Cost Antibody Signal Enhancer Improves Immunolabeling in Cell Culture, Primate Brain and Human Cancer Biopsy. Neuroscience, 2020, 439, 275-286.	2.3	10
3	Ouabain Accelerates Collective Cell Migration Through a cSrc and ERK1/2 Sensitive Metalloproteinase Activity. Journal of Membrane Biology, 2019, 252, 549-559.	2.1	4
4	Ouabain Modulates the Adherens Junction in Renal Epithelial Cells. Cellular Physiology and Biochemistry, 2019, 52, 1381-1397.	1.6	10
5	Differential homologous desensitization of the human histamine H 3 receptors of 445 and 365 amino acids expressed in CHO-K1 cells. Neurochemistry International, 2018, 112, 114-123.	3.8	5
6	Involvement of Src signaling in the synergistic effect between cisplatin and digoxin on cancer cell viability. Journal of Cellular Biochemistry, 2018, 119, 3352-3362.	2.6	10
7	id="M1"> <mml:mrow><mml:mi>î²</mml:mi></mml:mrow> and Wnt/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>î²</mml:mi></mml:mrow>-Catenin Pathways in the Epithelium-Mesenchymal Transition of Cataracts in a Transgenic Mouse Model. BioMed Research</mml:math 	1.9	2
8	International, 2018, 2018, 1-17. The PDZ-Binding Motif of HPV16-E6 Oncoprotein Modulates the Keratinization and Stemness Transcriptional Profile <i>In Vivo</i> . BioMed Research International, 2017, 2017, 1-9.	1.9	3
9	Ouabain Modulates the Distribution of Connexin 43 in Epithelial Cells. Cellular Physiology and Biochemistry, 2016, 39, 1329-1338.	1.6	19
10	EGF Regulates Claudinâ€2 and â€4 Expression Through Src and STAT3 in MDCK Cells. Journal of Cellular Physiology, 2015, 230, 105-115.	4.1	48
11	The Polarized Distribution of the Na+,K+-ATPase. , 2015, , 189-204.		Ο
12	Ouabain Increases Gap Junctional Communication in Epithelial Cells. Cellular Physiology and Biochemistry, 2014, 34, 2081-2090.	1.6	25
13	Ouabain induces endocytosis and degradation of tight junction proteins through ERK1/2-dependent pathways. Experimental Cell Research, 2014, 320, 108-118.	2.6	28
14	Apoptosis of hemocytes from lions-paw scallop Nodipecten subnodosus induced with paralyzing shellfish poison from Gymnodinium catenatum. Immunobiology, 2014, 219, 964-974.	1.9	12
15	Anterior and intermediate pituitary tissues express claudin 4 in follicle stellate cells and claudins 2 and 5 in endothelial cells. Cell and Tissue Research, 2014, 357, 309-321.	2.9	6
16	21-Benzylidene Digoxin: A Proapoptotic Cardenolide of Cancer Cells That Up-Regulates Na,K-ATPase and Epithelial Tight Junctions. PLoS ONE, 2014, 9, e108776.	2.5	32
17	The Na ⁺ -K ⁺ -ATPase as self-adhesion molecule and hormone receptor. American Journal of Physiology - Cell Physiology, 2012, 302, C473-C481.	4.6	52
18	The E6 Oncoprotein from HPV16 Enhances the Canonical Wnt/β-Catenin Pathway in Skin Epidermis <i>In Vivo</i> . Molecular Cancer Research, 2012, 10, 250-258.	3.4	49

#	Article	IF	CITATIONS
19	Accumulation, Biotransformation, Histopathology and Paralysis in the Pacific Calico Scallop Argopecten ventricosus by the Paralyzing Toxins of the Dinoflagellate Gymnodinium catenatum. Marine Drugs, 2012, 10, 1044-1065.	4.6	21
20	Ouabain modulates ciliogenesis in epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20591-20596.	7.1	32
21	Ouabain Modulates Cell Contacts as well as Functions that Depend on Cell Adhesion. Methods in Molecular Biology, 2011, 763, 155-168.	0.9	8
22	Ouabain modulates epithelial cell tight junction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11387-11392.	7.1	86
23	The Polarized Distribution of Na ⁺ ,K ⁺ -ATPase: Role of the Interaction between β Subunits. Molecular Biology of the Cell, 2010, 21, 2217-2225.	2.1	43
24	Control of tight junctional sealing: roles of epidermal growth factor and prostaglandin E ₂ . American Journal of Physiology - Cell Physiology, 2009, 297, C611-C620.	4.6	34
25	Tight junction and polarity interaction in the transporting epithelial phenotype. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 770-793.	2.6	128
26	Control of tight junctional sealing: role of epidermal growth factor. American Journal of Physiology - Renal Physiology, 2007, 292, F828-F836.	2.7	48
27	New Diseases Derived or Associated with the Tight Junction. Archives of Medical Research, 2007, 38, 465-478.	3.3	82
28	Evolution of the Transporting Epithelium Phenotype. , 2006, , 1-18.		0
29	Sodium/potasium ATPase (Na+, K+-ATPase) and ouabain/related cardiac glycosides: a new paradigm for development of anti- breast cancer drugs?. Breast Cancer Research and Treatment, 2006, 96, 1-15.	2.5	89
30	Contacts and cooperation between cells depend on the hormone ouabain. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10911-10916.	7.1	59
31	Regulation of Tight Junctions' Functional Integrity. , 2006, , 146-163.		2
32	Na+,K+-ATPase and hormone ouabain:new roles for an old enzyme and an old inhibitor. Cellular and Molecular Biology, 2006, 52, 31-40.	0.9	14
33	The Polarized Expression of Na+,K+-ATPase in Epithelia Depends on the Association between β-Subunits Located in Neighboring Cells. Molecular Biology of the Cell, 2005, 16, 1071-1081.	2.1	104
34	Cell Adhesion, Polarity, and Epithelia in the Dawn of Metazoans. Physiological Reviews, 2004, 84, 1229-1262.	28.8	145
35	Ouabain Binding to Na+,K+-ATPase Relaxes Cell Attachment and Sends a SpecificSignal (NACos) to the Nucleus. Journal of Membrane Biology, 2004, 198, 147-158.	2.1	66
36	Membrane targeting. Progress in Biophysics and Molecular Biology, 2003, 81, 81-115.	2.9	17

#	Article	IF	CITATIONS
37	Inhibitors of glycosphingolipid biosynthesis reduce transepithelial electrical resistance in MDCK I and FRT cells. American Journal of Physiology - Cell Physiology, 2003, 284, C1021-C1030.	4.6	18
38	Tight Junctions are Sensitive to Peptides Eliminated in the Urine. Journal of Membrane Biology, 2002, 188, 33-42.	2.1	14
39	E-Cadherin and tight junctions between epithelial cells of different animal species. Pflugers Archiv European Journal of Physiology, 2002, 444, 467-475.	2.8	31
40	Cytochalasin-D retards sperm incorporation deep into the egg cytoplasm but not membrane fusion with the egg plasma membrane. Molecular Reproduction and Development, 2002, 63, 518-528.	2.0	27
41	The Polarized Distribution of Na+, K+-ATPase and Active Transport across Epithelia. Journal of Membrane Biology, 2001, 184, 299-304.	2.1	27
42	Exocytosis of a 60 kDa protein (Calreticulin) from activated hamster oocytes. Molecular Reproduction and Development, 2001, 60, 405-413.	2.0	21
43	Biogenesis of Epithelial Polarity and Tight Junctions. , 2001, , .		4
44	Molecular Physiology and Pathophysiology of Tight Junctions I. Biogenesis of tight junctions and epithelial polarity. American Journal of Physiology - Renal Physiology, 2000, 279, G477-G482.	3.4	123
45	Molecular Characterization of the Tight Junction Protein ZO-1 in MDCK Cells. Experimental Cell Research, 1999, 248, 97-109.	2.6	46
46	Relationship between Na(+),K(+)-ATPase and cell attachment. Journal of Cell Science, 1999, 112 (Pt 23), 4223-32.	2.0	59
47	Tight Junctions and the Experimental Modifications of Lipid Content. Journal of Membrane Biology, 1998, 164, 59-69.	2.1	30
48	ROLE OF TIGHT JUNCTIONS IN ESTABLISHING AND MAINTAINING CELL POLARITY. Annual Review of Physiology, 1998, 60, 161-177.	13.1	244
49	Epithelial polarity. , 1996, , 49-69.		1
50	Ouabain resistance of the epithelial cell line (Ma104) is not due to lack of affinity of its pumps for the drug. Journal of Membrane Biology, 1995, 145, 295-300.	2.1	32
51	A novel type of cell-cell cooperation between epithelial cells. Journal of Membrane Biology, 1995, 145, 305-10.	2.1	26
52	Expression of potassium channels in epithelial cells depends on calcium-activated cell-cell contacts. Journal of Membrane Biology, 1995, 143, 219-26.	2.1	16
53	The making of a tight junction. Journal of Cell Science, 1993, 1993, 127-132.	2.0	80
54	The Paracellular Pathway. Pharmaceutical Biotechnology, 1993, , 3-21.	0.3	11

#	Article	IF	CITATIONS
55	Interaction of calcium with plasma membrane of epithelial (MDCK) cells during junction formation. American Journal of Physiology - Cell Physiology, 1992, 263, C313-C318.	4.6	72
56	The Role of Calcium in the Making of a Transporting Epithelium. Physiology, 1992, 7, 105-108.	3.1	3
57	Assembly and sealing of tight junctions: Possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. Journal of Membrane Biology, 1991, 122, 193-202.	2.1	257
58	Role of calcium in tight junction formation between epithelial cells. American Journal of Physiology - Cell Physiology, 1990, 259, C978-C986.	4.6	223
59	Repolarization of Na+-K+ pumps during establishment of epithelial monolayers. American Journal of Physiology - Cell Physiology, 1989, 257, C896-C905.	4.6	60
60	Development and Alteration of Polarity. Annual Review of Physiology, 1989, 51, 785-795.	13.1	57
61	Epithelial Tight Junctions. The American Review of Respiratory Disease, 1988, 138, S17-S21.	2.9	26

62 Lysosomal Degradation of Junctional Proteins. , 0, , .

6