
Troy Van Voorhis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 2006, 8, 3172-3191.	1.3	2,597
2	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113, 184-215.	0.8	2,561
3	Nonlocal van der Waals density functional: The simpler the better. Journal of Chemical Physics, 2010, 133, 244103.	1.2	974
4	Q-Chem 2.0: a high-performanceab initio electronic structure program package. Journal of Computational Chemistry, 2000, 21, 1532-1548.	1.5	617
5	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.	1.2	518
6	Constrained Density Functional Theory. Chemical Reviews, 2012, 112, 321-370.	23.0	454
7	Direct optimization method to study constrained systems within density-functional theory. Physical Review A, 2005, 72, .	1.0	447
8	Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nature Photonics, 2016, 10, 31-34.	15.6	418
9	A transferable model for singlet-fission kinetics. Nature Chemistry, 2014, 6, 492-497.	6.6	402
10	Thermally Activated Delayed Fluorescence Materials Based on Homoconjugation Effect of Donor–Acceptor Triptycenes. Journal of the American Chemical Society, 2015, 137, 11908-11911.	6.6	331
11	Nonlocal van der Waals Density Functional Made Simple. Physical Review Letters, 2009, 103, 063004.	2.9	329
12	A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nature Communications, 2020, 11, 5283.	5.8	286
13	Extracting electron transfer coupling elements from constrained density functional theory. Journal of Chemical Physics, 2006, 125, 164105.	1.2	281
14	The Diabatic Picture of Electron Transfer, Reaction Barriers, and Molecular Dynamics. Annual Review of Physical Chemistry, 2010, 61, 149-170.	4.8	280
15	Constrained Density Functional Theory and Its Application in Long-Range Electron Transfer. Journal of Chemical Theory and Computation, 2006, 2, 765-774.	2.3	250
16	Ï€-Clamp-mediated cysteine conjugation. Nature Chemistry, 2016, 8, 120-128.	6.6	236
17	Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nature Materials, 2014, 13, 1039-1043.	13.3	235
18	Direct Calculation of Electron Transfer Parameters through Constrained Density Functional Theory. Journal of Physical Chemistry A, 2006, 110, 9212-9218.	1.1	212

#	Article	IF	CITATIONS
19	Direct-Coupling O ₂ Bond Forming a Pathway in Cobalt Oxide Water Oxidation Catalysts. Journal of Physical Chemistry Letters, 2011, 2, 2200-2204.	2.1	177
20	Systematic Parametrization of Polarizable Force Fields from Quantum Chemistry Data. Journal of Chemical Theory and Computation, 2013, 9, 452-460.	2.3	164
21	Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes. Journal of Chemical Physics, 2011, 134, 054128.	1.2	152
22	A geometric approach to direct minimization. Molecular Physics, 2002, 100, 1713-1721.	0.8	137
23	Speed Limit for Triplet-Exciton Transfer in Solid-State PbS Nanocrystal-Sensitized Photon Upconversion. ACS Nano, 2017, 11, 7848-7857.	7.3	130
24	Benchmark variational coupled cluster doubles results. Journal of Chemical Physics, 2000, 113, 8873-8879.	1.2	114
25	Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene–thiolate ligands. Nature Chemistry, 2019, 11, 57-63.	6.6	109
26	On the Singletâ^'Triplet Splitting of Geminate Electronâ^'Hole Pairs in Organic Semiconductors. Journal of the American Chemical Society, 2008, 130, 3420-3427.	6.6	100
27	Benchmark Assessment of the Accuracy of Several van der Waals Density Functionals. Journal of Chemical Theory and Computation, 2012, 8, 1929-1934.	2.3	93
28	Electronic Properties of Disordered Organic Semiconductors via QM/MM Simulations. Accounts of Chemical Research, 2010, 43, 995-1004.	7.6	90
29	Shorter Exciton Lifetimes via an External Heavyâ€Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1701987.	11.1	90
30	Surface States Mediate Triplet Energy Transfer in Nanocrystal–Acene Composite Systems. Journal of the American Chemical Society, 2018, 140, 7543-7553.	6.6	88
31	Polyaniline Nanofiber Electrodes for Reversible Capture and Release of Mercury(II) from Water. Journal of the American Chemical Society, 2018, 140, 14413-14420.	6.6	87
32	Extracting Design Principles for Efficient Thermally Activated Delayed Fluorescence (TADF) from a Simple Four-State Model. Chemistry of Materials, 2019, 31, 6995-7006.	3.2	84
33	Molecular Insight Into the Energy Levels at the Organic Donor/Acceptor Interface: A Quantum Mechanics/Molecular Mechanics Study. Journal of Physical Chemistry C, 2011, 115, 14431-14436.	1.5	83
34	Spin-dependent charge transfer state design rules in organic photovoltaics. Nature Communications, 2015, 6, 6415.	5.8	83
35	Singlet fission efficiency in tetracene-based organic solar cells. Applied Physics Letters, 2014, 104, .	1.5	79
36	Excitation energies and Stokes shifts from a restricted open-shell Kohn-Sham approach. Journal of Chemical Physics, 2013, 138, 164101.	1.2	78

#	Article	IF	CITATIONS
37	Insights into Magneto-Optics of Helical Conjugated Polymers. Journal of the American Chemical Society, 2018, 140, 6501-6508.	6.6	76
38	Self-consistent implementation of a nonlocal van der Waals density functional with a Gaussian basis set. Journal of Chemical Physics, 2008, 129, 014106.	1.2	74
39	Implementation and assessment of a simple nonlocal van der Waals density functional. Journal of Chemical Physics, 2010, 132, 164113.	1.2	74
40	Prediction of Excited-State Energies and Singlet–Triplet Gaps of Charge-Transfer States Using a Restricted Open-Shell Kohn–Sham Approach. Journal of Chemical Theory and Computation, 2016, 12, 3353-3359.	2.3	74
41	A Polarizable QM/MM Explicit Solvent Model for Computational Electrochemistry in Water. Journal of Chemical Theory and Computation, 2012, 8, 610-617.	2.3	71
42	Molecular Design of Deep Blue Thermally Activated Delayed Fluorescence Materials Employing a Homoconjugative Triptycene Scaffold and Dihedral Angle Tuning. Chemistry of Materials, 2018, 30, 1462-1466.	3.2	71
43	Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nature Communications, 2020, 11, 2278.	5.8	71
44	Charge Transfer or J-Coupling? Assignment of an Unexpected Red-Shifted Absorption Band in a Naphthalenediimide-Based Metal–Organic Framework. Journal of Physical Chemistry Letters, 2013, 4, 453-458.	2.1	65
45	Polymers with Side Chain Porosity for Ultrapermeable and Plasticization Resistant Materials for Gas Separations. Advanced Materials, 2019, 31, e1807871.	11.1	64
46	Exciton/Charge-Transfer Electronic Couplings in Organic Semiconductors. Journal of Chemical Theory and Computation, 2011, 7, 594-601.	2.3	59
47	Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarinâ€Đecorated Cu ₂₄ L ₂₄ Metal–Organic Cages as Junctions. Angewandte Chemie - International Edition, 2020, 59, 2784-2792.	7.2	58
48	Connections between coupled cluster and generalized valence bond theories. Journal of Chemical Physics, 2001, 115, 7814-7821.	1.2	54
49	Two-body coupled cluster expansions. Journal of Chemical Physics, 2001, 115, 5033-5040.	1.2	51
50	Bootstrap embedding: An internally consistent fragment-based method. Journal of Chemical Physics, 2016, 145, 074102.	1.2	51
51	Toward Prediction of Nonradiative Decay Pathways in Organic Compounds II: Two Internal Conversion Channels in BODIPYs. Journal of Physical Chemistry C, 2020, 124, 3925-3938.	1.5	51
52	<i>Ïf </i> -SCF: A direct energy-targeting method to mean-field excited states. Journal of Chemical Physics, 2017, 147, 214104.	1.2	50
53	Rydberg energies using excited state density functional theory. Journal of Chemical Physics, 2008, 129, 124112.	1.2	49
54	Density matrix embedding in an antisymmetrized geminal power bath. Journal of Chemical Physics, 2015, 143, 024107.	1.2	46

#	Article	IF	CITATIONS
55	The Role of Electron–Hole Separation in Thermally Activated Delayed Fluorescence in Donor–Acceptor Blends. Journal of Physical Chemistry C, 2015, 119, 25591-25597.	1.5	45
56	A Semiconducting Conjugated Radical Polymer: Ambipolar Redox Activity and Faraday Effect. Journal of the American Chemical Society, 2018, 140, 10881-10889.	6.6	41
57	Toward Prediction of Nonradiative Decay Pathways in Organic Compounds I: The Case of Naphthalene Quantum Yields. Journal of Physical Chemistry C, 2019, 123, 15394-15402.	1.5	41
58	A nonorthogonal approach to perfect pairing. Journal of Chemical Physics, 2000, 112, 5633-5638.	1.2	40
59	Salt Effect Accelerates Site-Selective Cysteine Bioconjugation. ACS Central Science, 2016, 2, 637-646.	5.3	36
60	Morphology of Passivating Organic Ligands around a Nanocrystal. Journal of Physical Chemistry C, 2018, 122, 26267-26274.	1.5	34
61	Triplet Tuning: A Novel Family of Non-Empirical Exchange–Correlation Functionals. Journal of Chemical Theory and Computation, 2019, 15, 1226-1241.	2.3	34
62	Molecular-Level Insights into Oxygen Reduction Catalysis by Graphite-Conjugated Active Sites. ACS Catalysis, 2017, 7, 7680-7687.	5.5	33
63	Superhydrophobic, Surfactantâ€doped, Conducting Polymers for Electrochemically Reversible Adsorption of Organic Contaminants. Advanced Functional Materials, 2018, 28, 1801466.	7.8	33
64	Extended MÃ,ller-Plesset perturbation theory for dynamical and static correlations. Journal of Chemical Physics, 2014, 141, 164117.	1.2	31
65	A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states. Journal of Chemical Physics, 2013, 139, 174104.	1.2	29
66	Communication: CDFT-CI couplings can be unreliable when there is fractional charge transfer. Journal of Chemical Physics, 2015, 143, 231102.	1.2	26
67	Large Increase in External Quantum Efficiency by Dihedral Angle Tuning in a Skyâ€Blue Thermally Activated Delayed Fluorescence Emitter. Advanced Optical Materials, 2019, 7, 1900476.	3.6	25
68	Half-Projected σ Self-Consistent Field For Electronic Excited States. Journal of Chemical Theory and Computation, 2019, 15, 2954-2965.	2.3	25
69	Resummed memory kernels in generalized system-bath master equations. Journal of Chemical Physics, 2014, 141, 054112.	1.2	24
70	A Heterogeneous Kinetics Model for Triplet Exciton Transfer in Solid-State Upconversion. Journal of Physical Chemistry Letters, 2019, 10, 3147-3152.	2.1	24
71	QM/MM Study of Static and Dynamic Energetic Disorder in the Emission Layer of an Organic Light-Emitting Diode. Journal of Physical Chemistry Letters, 2018, 9, 1329-1334.	2.1	23
72	Bandâ€like Charge Photogeneration at a Crystalline Organic Donor/Acceptor Interface. Advanced Energy Materials, 2018, 8, 1701494.	10.2	23

#	Article	IF	CITATIONS
73	Dominance of Exciton Lifetime in the Stability of Phosphorescent Dyes. Advanced Optical Materials, 2019, 7, 1901048.	3.6	23
74	Bootstrap Embedding for Molecules. Journal of Chemical Theory and Computation, 2019, 15, 4497-4506.	2.3	22
75	Colloidal CdSe nanocrystals are inherently defective. Nature Communications, 2021, 12, 890.	5.8	22
76	Performance of Bootstrap Embedding for long-range interactions and 2D systems. Molecular Physics, 2017, 115, 2242-2253.	0.8	21
77	Time-dependent projected Hartree-Fock. Journal of Chemical Physics, 2015, 142, 124103.	1.2	20
78	A structural and mechanistic study of π-clamp-mediated cysteine perfluoroarylation. Scientific Reports, 2017, 7, 7954.	1.6	20
79	Charge Recombination in Phosphorescent Organic Light-Emitting Diode Host–Guest Systems through QM/MM Simulations. Journal of Physical Chemistry C, 2016, 120, 19987-19994.	1.5	19
80	Incremental embedding: A density matrix embedding scheme for molecules. Journal of Chemical Physics, 2018, 149, 194108.	1.2	17
81	Gas-Phase Ethylene Polymerization by Single-Site Cr Centers in a Metal–Organic Framework. ACS Catalysis, 2020, 10, 3864-3870.	5.5	17
82	Why many semiempirical molecular orbital theories fail for liquid water and how to fix them. Journal of Computational Chemistry, 2015, 36, 934-939.	1.5	16
83	First-Principles Monte Carlo Simulations of Reaction Equilibria in Compressed Vapors. ACS Central Science, 2016, 2, 409-415.	5.3	16
84	Polydiacetylene functionalized with charged termini for device-free colorimetric detection of malathion. Journal of Colloid and Interface Science, 2018, 528, 27-35.	5.0	16
85	An Nâ€Heterocyclicâ€Carbeneâ€Derived Distonic Radical Cation. Angewandte Chemie - International Edition, 2020, 59, 3952-3955.	7.2	16
86	Using SCF metadynamics to extend density matrix embedding theory to excited states. Journal of Chemical Physics, 2019, 151, 034112.	1.2	15
87	A pathway to diphosphorus from the dissociation of photoexcited tetraphosphorus. RSC Advances, 2013, 3, 23166.	1.7	14
88	Atom-Based Bootstrap Embedding For Molecules. Journal of Physical Chemistry Letters, 2019, 10, 6368-6374.	2.1	14
89	Understanding the Dipole Moment of Liquid Water from a Self-Attractive Hartree Decomposition. Journal of Physical Chemistry Letters, 2021, 12, 6-12.	2.1	14
90	Many-electron expansion: A density functional hierarchy for strongly correlated systems. Physical Review B, 2016, 93, .	1.1	13

#	Article	IF	CITATIONS
91	Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer. Chemical Science, 2017, 8, 2597-2609.	3.7	13
92	Resolving the Triexciton Recombination Pathway in CdSe/CdS Nanocrystals through State-Specific Correlation Measurements. Nano Letters, 2021, 21, 7457-7464.	4.5	13
93	Condensed phase electron transfer beyond the Condon approximation. Journal of Chemical Physics, 2016, 145, 214105.	1.2	12
94	Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarinâ€Decorated Cu 24 L 24 Metal–Organic Cages as Junctions. Angewandte Chemie, 2020, 132, 2806-2814.	1.6	12
95	Bootstrap Embedding For Large Molecular Systems. Journal of Chemical Theory and Computation, 2020, 16, 5035-5046.	2.3	11
96	Maximizing TADF via Conformational Optimization. Journal of Physical Chemistry A, 2021, 125, 7644-7654.	1.1	11
97	GEOMETRIC DIRECT MINIMIZATION OF HARTREE–FOCK CALCULATIONS INVOLVING OPEN SHELL WAVEFUNCTIONS WITH SPIN RESTRICTED ORBITALS. Journal of Theoretical and Computational Chemistry, 2002, 01, 255-261.	1.8	10
98	Semiclassical representations of electronic structure and dynamics. Journal of Chemical Physics, 2004, 120, 579-589.	1.2	10
99	Adiabatic Approximation in Explicit Solvent Models of RedOx Chemistry. Journal of Chemical Theory and Computation, 2016, 12, 5111-5116.	2.3	10
100	Unraveling the Fate of Host Excitons in Host–Guest Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 10311-10318.	1.5	10
101	Understanding Disorder in 2D Materials: The Case of Carbon Doping of Silicene. Nano Letters, 2020, 20, 6336-6343.	4.5	8
102	Accurate Electronic Excitation Energies in Full-Valence Active Space via Bootstrap Embedding. Journal of Chemical Theory and Computation, 2021, 17, 3335-3347.	2.3	8
103	Diabatic Valence-Hole States in the C ₂ Molecule: "Putting Humpty Dumpty Together Again― Journal of Physical Chemistry A, 2022, 126, 3090-3100.	1.1	8
104	The Impact of Carrier Delocalization and Interfacial Electric Field Fluctuations on Organic Photovoltaics. Journal of Physical Chemistry C, 2017, 121, 26629-26636.	1.5	7
105	Self-Attractive Hartree Decomposition: Partitioning Electron Density into Smooth Localized Fragments. Journal of Chemical Theory and Computation, 2018, 14, 92-103.	2.3	7
106	Exploring Low Internal Reorganization Energies for Silicene Nanoclusters. Physical Review Applied, 2018, 9, .	1.5	7
107	Lock-and-Key Exciplexes for Thermally Activated Delayed Fluorescence. Organic Materials, 2020, 02, 001-010.	1.0	7
108	Long-range interactions from the many-pair expansion: A different avenue to dispersion in DFT. Journal of Chemical Physics, 2017, 146, 024111.	1.2	6

#	Article	IF	CITATIONS
109	A hybrid memory kernel approach for condensed phase non-adiabatic dynamics. Journal of Chemical Physics, 2017, 147, 014108.	1.2	5
110	Quantum chemical approaches to [NiFe] hydrogenase. Essays in Biochemistry, 2017, 61, 293-303.	2.1	5
111	Implementation of the Many-Pair Expansion for Systematically Improving Density Functional Calculations of Molecules. Journal of Chemical Theory and Computation, 2019, 15, 1089-1101.	2.3	5
112	Bootstrap embedding with an unrestricted mean-field bath. Journal of Chemical Physics, 2020, 153, 214101.	1.2	5
113	Densities of states for disordered systems from free probability. Physical Review B, 2013, 88, .	1.1	4
114	Charge Transfer in Molecular Materials. , 2018, , 1-31.		4
115	An Nâ€Heterocyclicâ€Carbeneâ€Derived Distonic Radical Cation. Angewandte Chemie, 2020, 132, 3980-3983.	1.6	4
116	Heterogeneous Pair Approximation of Methanol Oxidation on TiO ₂ Reveals Two Reaction Pathways. Journal of Physical Chemistry C, 2022, 126, 1845-1856.	1.5	4
117	Mean field treatment of heterogeneous steady state kinetics. Chemical Physics Letters, 2017, 685, 185-190.	1.2	3
118	Non-radiative deactivation of cytosine derivatives at elevated temperature. Molecular Physics, 2018, 116, 2591-2598.	0.8	2
119	Investigation of External Quantum Efficiency Roll-Off in OLEDs Using the Mean-Field Steady-State Kinetic Model. Journal of Physical Chemistry C, 2020, 124, 14424-14431.	1.5	2
120	Machine learning dynamic correlation in chemical kinetics. Journal of Chemical Physics, 2021, 155, 144107.	1.2	2
121	Q-Chem 2.0: a high-performance ab initio electronic structure program package. , 2000, 21, 1532.		2
	Innentitelbild: Dhotoswitchable Solâf"Cal Transitions and Catalysis Madiated by Dolymor Naturarka		

Innentitelbild: Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarinâ€Decorated Cu₂₄L₂₄ Metal–Organic Cages as Junctions (Angew.) Tj ET@q0 0 0 @BT /Overl 122