Gregory Stephanopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575503/publications.pdf

Version: 2024-02-01

354 papers 37,692 citations

92 h-index 179 g-index

435 all docs 435 docs citations

435 times ranked

32986 citing authors

#	Article	IF	CITATIONS
1	Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 2012, 481, 380-384.	27.8	1,470
2	Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in <i>Escherichia coli</i> Science, 2010, 330, 70-74.	12.6	1,426
3	Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 2011, 43, 869-874.	21.4	945
4	Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12678-12683.	7.1	775
5	Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production. Science, 2006, 314, 1565-1568.	12.6	730
6	Challenges in Engineering Microbes for Biofuels Production. Science, 2007, 315, 801-804.	12.6	655
7	Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature, 2015, 524, 361-365.	27.8	624
8	Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology, 2012, 8, 839-847.	8.0	614
9	Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering, 2013, 15, 1-9.	7.0	573
10	Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature Biotechnology, 2015, 33, 377-383.	17.5	561
11	Metabolic Fluxes and Metabolic Engineering. Metabolic Engineering, 1999, 1, 1-11.	7.0	522
12	Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions. Metabolic Engineering, 2007, 9, 68-86.	7.0	514
13	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	6.6	513
14	The mTORC1 Pathway Stimulates Glutamine Metabolism and Cell Proliferation by Repressing SIRT4. Cell, 2013, 153, 840-854.	28.9	505
15	Metabolic flux distributions inCorynebacterium glutamicum during growth and lysine overproduction. Biotechnology and Bioengineering, 1993, 41, 633-646.	3.3	484
16	Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metabolic Engineering, 2006, 8, 324-337.	7.0	423
17	Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11299-11304.	7.1	423
18	Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nature Biotechnology, 2013, 31, 335-341.	17.5	412

#	Article	IF	Citations
19	Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 2005, 23, 612-616.	17.5	406
20	Oncogenic Kâ€Ras decouples glucose and glutamine metabolism to support cancer cell growth. Molecular Systems Biology, 2011, 7, 523.	7.2	404
21	Global transcription machinery engineering: A new approach for improving cellular phenotype. Metabolic Engineering, 2007, 9, 258-267.	7.0	398
22	Hepatic Insulin Resistance Is Sufficient to Produce Dyslipidemia and Susceptibility to Atherosclerosis. Cell Metabolism, 2008, 7, 125-134.	16.2	383
23	A compendium of gene expression in normal human tissues. Physiological Genomics, 2001, 7, 97-104.	2.3	376
24	Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology, 2017, 35, 173-177.	17.5	366
25	Terpenoids: Opportunities for Biosynthesis of Natural Product Drugs Using Engineered Microorganisms. Molecular Pharmaceutics, 2008, 5, 167-190.	4.6	363
26	Engineering <i>Yarrowia lipolytica</i> as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10848-10853.	7.1	362
27	Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?. Nature Reviews Microbiology, 2009, 7, 715-723.	28.6	352
28	Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 2008, 10, 295-304.	7.0	343
29	Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metabolic Engineering, 2011, 13, 656-665.	7.0	307
30	Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13654-13659.	7.1	304
31	Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nature Biotechnology, 2014, 32, 473-478.	17.5	298
32	Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metabolic Engineering, 2015, 29, 56-65.	7.0	291
33	Reductive glutamine metabolism is a function of the \hat{l}_{\pm} -ketoglutarate to citrate ratio in cells. Nature Communications, 2013, 4, 2236.	12.8	290
34	Effects of substratum morphology on cell physiology. Biotechnology and Bioengineering, 1994, 43, 764-771.	3.3	282
35	InÂVivo HIF-Mediated Reductive Carboxylation Is Regulated by Citrate Levels and Sensitizes VHL-Deficient Cells to Glutamine Deprivation. Cell Metabolism, 2013, 17, 372-385.	16.2	280
36	The future of metabolic engineering and synthetic biology: Towards a systematic practice. Metabolic Engineering, 2012, 14, 233-241.	7.0	277

#	Article	IF	CITATIONS
37	Optimization of a heterologous pathway for the production of flavonoids from glucose. Metabolic Engineering, 2011, 13, 392-400.	7.0	276
38	Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nature Biotechnology, 2009, 27, 760-765.	17.5	272
39	Engineering <i>Escherichia coli</i> coculture systems for the production of biochemical products. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8266-8271.	7.1	268
40	Studies on on-line bioreactor identification. I. Theory. Biotechnology and Bioengineering, 1984, 26, 1176-1188.	3.3	265
41	Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line. Journal of Biological Chemistry, 2008, 283, 20621-20627.	3.4	265
42	Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nature Medicine, 2017, 23, 235-241.	30.7	263
43	Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. Journal of Biotechnology, 2009, 144, 167-174.	3.8	257
44	Metabolic Engineering: Past and Future. Annual Review of Chemical and Biomolecular Engineering, 2013, 4, 259-288.	6.8	254
45	Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14, 611-622.	7.0	250
46	The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metabolic Engineering, 2015, 30, 27-39.	7.0	249
47	Accurate Assessment of Amino Acid Mass Isotopomer Distributions for Metabolic Flux Analysis. Analytical Chemistry, 2007, 79, 7554-7559.	6. 5	247
48	An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnology and Bioengineering, 2008, 99, 686-699.	3.3	241
49	Application of macroscopic balances to the identification of gross measurement errors. Biotechnology and Bioengineering, 1983, 25, 2177-2208.	3.3	220
50	Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metabolic Engineering, 2007, 9, 277-292.	7.0	217
51	A linguistic model for the rational design of antimicrobial peptides. Nature, 2006, 443, 867-869.	27.8	214
52	Synthetic Biology and Metabolic Engineering. ACS Synthetic Biology, 2012, 1, 514-525.	3.8	212
53	Diffusion coefficients of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes. Biotechnology and Bioengineering, 1986, 28, 829-835.	3.3	211
54	Pyruvate Kinase Isoform Expression Alters Nucleotide Synthesis to Impact Cell Proliferation. Molecular Cell, 2015, 57, 95-107.	9.7	209

#	Article	IF	CITATIONS
55	Engineering of Promoter Replacement Cassettes for Fine-Tuning of Gene Expression in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2006, 72, 5266-5273.	3.1	200
56	Engineering alcohol tolerance in yeast. Science, 2014, 346, 71-75.	12.6	193
57	Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3209-3214.	7.1	193
58	Metformin Decreases Glucose Oxidation and Increases the Dependency of Prostate Cancer Cells on Reductive Glutamine Metabolism. Cancer Research, 2013, 73, 4429-4438.	0.9	178
59	Intracellular flux analysis in hybridomas using mass balances and in vitro13C nmr. Biotechnology and Bioengineering, 1995, 45, 292-303.	3.3	174
60	L-Tyrosine production by deregulated strains of Escherichia coli. Applied Microbiology and Biotechnology, 2007, 75, 103-110.	3.6	172
61	Exploiting biological complexity for strain improvement through systems biology. Nature Biotechnology, 2004, 22, 1261-1267.	17.5	166
62	Combinatorial engineering of microbes for optimizing cellular phenotype. Current Opinion in Chemical Biology, 2008, 12, 168-176.	6.1	162
63	Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes and Development, 2011, 25, 1716-1733.	5.9	162
64	Engineering oxidative stress defense pathways to build a robust lipid production platform in <i>Yarrowia lipolytica </i> Biotechnology and Bioengineering, 2017, 114, 1521-1530.	3.3	162
65	Two-step pathway for isoprenoid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 506-511.	7.1	160
66	Relative potential of biosynthetic pathways for biofuels and bio-based products. Nature Biotechnology, 2011, 29, 1074-1078.	17.5	158
67	Metabolic engineering in the host Yarrowia lipolytica. Metabolic Engineering, 2018, 50, 192-208.	7.0	157
68	Integrated bioprocess for conversion of gaseous substrates to liquids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3773-3778.	7.1	156
69	Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6477-6482.	7.1	154
70	Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metabolic Engineering, 2008, 10, 24-32.	7.0	150
71	High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochemical Journal, 2005, 388, 669-677.	3.7	147
72	The Phosphoinositide 3-Kinase Regulatory Subunit p85α Can Exert Tumor Suppressor Properties through Negative Regulation of Growth Factor Signaling. Cancer Research, 2010, 70, 5305-5315.	0.9	140

#	Article	IF	Citations
73	Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. Physiological Genomics, 2004, 16, 229-239.	2.3	137
74	Computer-aided synthesis of biochemical pathways. Biotechnology and Bioengineering, 1990, 36, 1119-1132.	3.3	134
75	Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metabolic Engineering, 2007, 9, 337-347.	7.0	134
76	Metabolic flux analysis of hybridoma continuous culture steady state multiplicity., 1999, 63, 675-683.		133
77	Improvement of Xylose Uptake and Ethanol Production in Recombinant Saccharomyces cerevisiae through an Inverse Metabolic Engineering Approach. Applied and Environmental Microbiology, 2005, 71, 8249-8256.	3.1	133
78	Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13538-13543.	7.1	133
79	Interactive Exploration of Microarray Gene Expression Patterns in a Reduced Dimensional Space. Genome Research, 2002, 12, 1112-1120.	5 . 5	131
80	Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnology for Biofuels, 2016, 9, 77.	6.2	126
81	Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science, 2016, 353, 583-586.	12.6	119
82	Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium., 1999, 62, 324-335.		115
83	Determination of minimum sample size and discriminatory expression patterns in microarray data. Bioinformatics, 2002, 18, 1184-1193.	4.1	114
84	Metabolic engineering â€" methodologies and future prospects. Trends in Biotechnology, 1993, 11, 392-396.	9.3	113
85	Metabolic effects on recombinant interferon-? glycosylation in continuous culture of Chinese hamster ovary cells., 1999, 62, 336-347.		111
86	Nontargeted Elucidation of Metabolic Pathways Using Stable-Isotope Tracers and Mass Spectrometry. Analytical Chemistry, 2010, 82, 6621-6628.	6.5	111
87	Measuring Deuterium Enrichment of Glucose Hydrogen Atoms by Gas Chromatography/Mass Spectrometry. Analytical Chemistry, 2011, 83, 3211-3216.	6.5	111
88	Optimization of fed-batch penicillin fermentation: A case of singular optimal control with state constraints. Biotechnology and Bioengineering, 1989, 34, 72-78.	3.3	107
89	Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends in Biotechnology, 2007, 25, 417-424.	9.3	107
90	Holistic Approaches in Lipid Production by Yarrowia lipolytica. Trends in Biotechnology, 2018, 36, 1157-1170.	9.3	104

#	Article	IF	Citations
91	Genome-Wide Dynamic Transcriptional Profiling of the Light-to-Dark Transition in <i>Synechocystis</i> Sp. Strain PCC 6803. Journal of Bacteriology, 2002, 184, 3671-3681.	2.2	101
92	Cofactor Balance by Nicotinamide Nucleotide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle. Journal of Biological Chemistry, 2013, 288, 12967-12977.	3.4	101
93	Improving Metabolic Pathway Efficiency by Statistical Model-Based Multivariate Regulatory Metabolic Engineering. ACS Synthetic Biology, 2017, 6, 148-158.	3.8	101
94	Metabolic requirements for cancer cell proliferation. Cancer & Metabolism, 2016, 4, 16.	5.0	99
95	Elucidation of Gene Interaction Networks Through Time-Lagged Correlation Analysis of Transcriptional Data. Genome Research, 2004, 14, 1654-1663.	5.5	96
96	Metabolic engineering by genome shuffling. Nature Biotechnology, 2002, 20, 666-668.	17.5	95
97	Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metabolic Engineering, 2003, 5, 32-41.	7.0	94
98	Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Current Opinion in Biotechnology, 2005, 16, 361-366.	6.6	92
99	Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: Identification of enzymatic bottlenecks by systematic gene overexpression. Metabolic Engineering, 2008, 10, 69-77.	7.0	92
100	Perspectives of biotechnological production of l-tyrosine and its applications. Applied Microbiology and Biotechnology, 2007, 77, 751-762.	3.6	91
101	Feedback Inhibition of Chorismate Mutase/Prephenate Dehydrogenase (TyrA) of Escherichia coli: Generation and Characterization of Tyrosine-Insensitive Mutants. Applied and Environmental Microbiology, 2005, 71, 7224-7228.	3.1	89
102	Carboxyl-Terminated Dendrimer-Coated Bioactive Interface for Protein Microarray:Â High-Sensitivity Detection of Antigen in Complex Biological Samples. Langmuir, 2007, 23, 5670-5677.	3.5	89
103	Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. FEBS Journal, 2003, 270, 3525-3542.	0.2	88
104	Melanin-Based High-Throughput Screen for <scp>l</scp> -Tyrosine Production in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2008, 74, 1190-1197.	3.1	86
105	Flux amplification in complex metabolic networks. Chemical Engineering Science, 1997, 52, 2607-2627.	3.8	85
106	Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2016, 100, 3781-3798.	3.6	85
107	Coâ€culture engineering for microbial biosynthesis of 3â€aminoâ€benzoic acid in <i>Escherichia coli</i> Biotechnology Journal, 2016, 11, 981-987.	3.5	84
108	Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2319-2324.	7.1	83

#	Article	IF	Citations
109	Induction of mammalian cell death by simple shear and extensional flows. Biotechnology and Bioengineering, 2009, 104, 360-370.	3.3	83
110	Metabolite Profiling Identified Methylerythritol Cyclodiphosphate Efflux as a Limiting Step in Microbial Isoprenoid Production. PLoS ONE, 2012, 7, e47513.	2.5	83
111	Review of methods to probe single cell metabolism and bioenergetics. Metabolic Engineering, 2015, 27, 115-135.	7.0	82
112	Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metabolic Engineering, 2016, 34, 80-87.	7.0	82
113	Studies on on-line bioreactor identification. II. Numerical and experimental results. Biotechnology and Bioengineering, 1984, 26, 1189-1197.	3.3	81
114	Loss of RBF1 changes glutamine catabolism. Genes and Development, 2013, 27, 182-196.	5.9	81
115	Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metabolic Engineering, 2018, 48, 243-253.	7.0	80
116	BLOSUM62 miscalculations improve search performance. Nature Biotechnology, 2008, 26, 274-275.	17.5	79
117	Identification and Analysis of the Polyhydroxyalkanoate-Specific \hat{I}^2 -Ketothiolase and Acetoacetyl Coenzyme A Reductase Genes in the Cyanobacterium Synechocystis sp. Strain PCC6803. Applied and Environmental Microbiology, 2000, 66, 4440-4448.	3.1	78
118	Engineering E. coli–E. coli cocultures for production of muconic acid from glycerol. Microbial Cell Factories, 2015, 14, 134.	4.0	78
119	Mutagenesis of the Bacterial RNA Polymerase Alpha Subunit for Improvement of Complex Phenotypes. Applied and Environmental Microbiology, 2009, 75, 2705-2711.	3.1	77
120	Optimization of amorphadiene synthesis in <i>bacillus subtilis</i> via transcriptional, translational, and media modulation. Biotechnology and Bioengineering, 2013, 110, 2556-2561.	3.3	77
121	Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Applied Microbiology and Biotechnology, 2013, 97, 3333-3341.	3.6	77
122	Metabolite and isotopomer balancing in the analysis of metabolic cycles: I. Theory. , 1999, 62, 375-391.		76
123	Improving formaldehyde consumption drives methanol assimilation in engineered E. coli. Nature Communications, 2018, 9, 2387.	12.8	76
124	Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metabolic Engineering, 2020, 61, 344-351.	7.0	75
125	Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Applied Microbiology and Biotechnology, 2006, 72, 968-974.	3.6	74
126	The p85 $\hat{l}\pm$ Regulatory Subunit of Phosphoinositide 3-Kinase Potentiates c-Jun N-Terminal Kinase-Mediated Insulin Resistance. Molecular and Cellular Biology, 2007, 27, 2830-2840.	2.3	74

#	Article	IF	CITATIONS
127	Metabolic characterization of aL-lysine-producing strain by continuous culture. Biotechnology and Bioengineering, 1992, 39, 565-574.	3.3	73
128	Metabolomic and ¹³ Câ€metabolic flux analysis of a xyloseâ€consuming <i>Saccharomyces cerevisiae</i> strain expressing xylose isomerase. Biotechnology and Bioengineering, 2015, 112, 470-483.	3.3	73
129	Optimization of $13\mathrm{C}$ isotopic tracers for metabolic flux analysis in mammalian cells. Metabolic Engineering, $2012, 14, 162-171.$	7.0	72
130	Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5308-E5316.	7.1	72
131	Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers. Journal of Clinical Investigation, 2017, 127, 1631-1645.	8.2	72
132	The effect of intraparticle convection on nutrient transport in porous biological pellets. Chemical Engineering Science, 1989, 44, 2031-2039.	3.8	71
133	Carbon Flux Distributions at the Glucose 6-Phosphate Branch Point in Corynebacterium glutamicum during Lysine Overproduction. Biotechnology Progress, 1994, 10, 327-334.	2.6	71
134	Efflux transporter engineering markedly improves amorphadiene production in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2016, 113, 1755-1763.	3.3	71
135	Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid. Metabolic Engineering, 2019, 55, 276-289.	7.0	71
136	Synergistic substrate cofeeding stimulates reductive metabolism. Nature Metabolism, 2019, 1, 643-651.	11.9	71
137	Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nature Communications, 2022, 13, 572.	12.8	70
138	The growth of competing microbial populations in a CSTR with periodically varying inputs. AICHE Journal, 1979, 25, 863-872.	3 . 6	69
139	A Functional Protein Chip for Pathway Optimization and in Vitro Metabolic Engineering. Science, 2004, 304, 428-431.	12.6	68
140	13C Metabolic Flux Analysis of acetate conversion to lipids by Yarrowia lipolytica. Metabolic Engineering, 2016, 38, 86-97.	7.0	68
141	Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers. Blood, 2020, 136, 1303-1316.	1.4	68
142	Metabolic activity control of the L-lysine fermentation by restrained growth fed-batch strategies. Biotechnology Progress, 1991, 7, 501-509.	2.6	67
143	Engineering promoter regulation. Biotechnology and Bioengineering, 2007, 96, 550-558.	3.3	67
144	Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering. Synthetic and Systems Biotechnology, 2018, 3, 3-19.	3.7	65

#	Article	IF	Citations
145	Carbon Flux Distributions at the Pyruvate Branch Point in Corynebacterium glutamicum during Lysine Overproduction. Biotechnology Progress, 1994, 10, 320-326.	2.6	64
146	Highâ€titer biosynthesis of hyaluronic acid by recombinant <i>Corynebacterium glutamicum</i> Biotechnology Journal, 2016, 11, 574-584.	3.5	63
147	Metabolic engineering of Escherichia coli for the production of isoprenoids. FEMS Microbiology Letters, 2018, 365, .	1.8	63
148	Mixed carbon substrates: a necessary nuisance or a missed opportunity?. Current Opinion in Biotechnology, 2020, 62, 15-21.	6.6	63
149	Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metabolic Engineering, 2021, 68, 152-161.	7.0	63
150	Metabolic and physiological studies of Corynebacterium glutamicum mutants., 1997, 55, 864-879.		61
151	A review of cellulosic microbial fuel cells: Performance and challenges. Biomass and Bioenergy, 2013, 56, 179-188.	5 . 7	61
152	Phage-Assisted Evolution of <i>Bacillus methanolicus</i> Methanol Dehydrogenase 2. ACS Synthetic Biology, 2019, 8, 796-806.	3.8	61
153	Effect of Anaplerotic Fluxes and Amino Acid Availability on Hepatic Lipoapoptosis. Journal of Biological Chemistry, 2009, 284, 33425-33436.	3.4	60
154	Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation. PLoS Pathogens, 2016, 12, e1006020.	4.7	60
155	A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor. Mathematical Biosciences, 1979, 45, 99-135.	1.9	59
156	Chemostat dynamics of plasmid-bearing, plasmid-free mixed recombinant cultures. Chemical Engineering Science, 1988, 43, 49-57.	3.8	59
157	Improved Gene Targeting through Cell Cycle Synchronization. PLoS ONE, 2015, 10, e0133434.	2.5	59
158	Effect of reversible reactions on isotope label redistribution. Analysis of the pentose phosphate pathway. FEBS Journal, 1998, 252, 360-371.	0.2	58
159	Packed bed bioreactor with porous ceramic beads for animal cell culture. Biotechnology and Bioengineering, 1993, 41, 25-34.	3.3	56
160	Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli. Applied Microbiology and Biotechnology, 2012, 93, 1651-1661.	3.6	56
161	Combinatorial Engineering of 1-Deoxy-D-Xylulose 5-Phosphate Pathway Using Cross-Lapping In Vitro Assembly (CLIVA) Method. PLoS ONE, 2013, 8, e79557.	2.5	56
162	Akt regulation of glycolysis mediates bioenergetic stability in epithelial cells. ELife, 2017, 6, .	6.0	55

#	Article	IF	Citations
163	Uncovering the gene knockout landscape for improved lycopene production in E. coli. Applied Microbiology and Biotechnology, 2008, 78, 801-810.	3.6	54
164	Engineering a novel biosynthetic pathway in <i>Escherichia coli</i> for production of renewable ethylene glycol. Biotechnology and Bioengineering, 2016, 113, 376-383.	3.3	54
165	Engineering of Taxadiene Synthase for Improved Selectivity and Yield of a Key Taxol Biosynthetic Intermediate. ACS Synthetic Biology, 2017, 6, 201-205.	3.8	54
166	Studies on on-line bioreactor identification. IV. Utilization of pH measurements for product estimation. Biotechnology and Bioengineering, 1984, 26, 1209-1218.	3.3	53
167	A highâ€throughput screen for hyaluronic acid accumulation in recombinant ⟨i⟩Escherichia coli⟨/i⟩ transformed by libraries of engineered sigma factors. Biotechnology and Bioengineering, 2008, 101, 788-796.	3.3	53
168	Anaerobic CO ₂ fixation by the acetogenic bacterium <i>Moorella thermoacetica</i> Journal, 2013, 59, 3176-3183.	3.6	53
169	On physiological multiplicity and population heterogeneity of biological systems. Chemical Engineering Science, 1996, 51, 1509-1521.	3.8	52
170	Fermentation database mining by pattern recognition., 1997, 53, 443-452.		52
171	Rapamycin reduces hybridoma cell death and enhances monoclonal antibody production. Biotechnology and Bioengineering, 2001, 76, 1-10.	3.3	52
172	Mapping physiological states from microarray expression measurements. Bioinformatics, 2002, 18, 1054-1063.	4.1	52
173	Analysis of polyhydroxybutyrate flux limitations by systematic genetic and metabolic perturbations. Metabolic Engineering, 2010, 12, 187-195.	7.0	52
174	Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis. Metabolic Engineering, 2017, 43, 113-124.	7.0	52
175	Metabolite and isotopomer balancing in the analysis of metabolic cycles: II. Applications. , 1999, 62, 392-401.		51
176	Physiological, biochemical, and mathematical studies of micro-aerobic continuous ethanol fermentation by Saccharomyces cerevisiae. I: Hysteresis, oscillations, and maximum specific ethanol productivities in chemostat culture. Biotechnology and Bioengineering, 1990, 36, 1006-1019.	3.3	50
177	A modeling framework for the study of protein glycosylation. , 1996, 50, 73-90.		49
178	Metabolic engineering. Biotechnology and Bioengineering, 1998, 58, 119-120.	3.3	49
179	Effect of pH oscillations on a competing mixed culture. Biotechnology and Bioengineering, 1986, 28, 1127-1137.	3.3	48
180	Overview of computational methods for the inference of gene regulatory networks. Computers and Chemical Engineering, 2005, 29, 519-534.	3.8	48

#	Article	IF	CITATIONS
181	Novel Strategies and Platforms for Industrial Isoprenoid Engineering. Trends in Biotechnology, 2020, 38, 811-822.	9.3	48
182	Ketogenic Essential Amino Acids Modulate Lipid Synthetic Pathways and Prevent Hepatic Steatosis in Mice. PLoS ONE, 2010, 5, e12057.	2.5	48
183	Effect of glutamine limitation on the death of attached Chinese hamster ovary cells. Biotechnology and Bioengineering, 1999, 64, 46-53.	3.3	47
184	Quantifying carbon sources for de novo lipogenesis in wild-type and IRS-1 knockout brown adipocytes. Journal of Lipid Research, 2004, 45, 1324-1332.	4.2	47
185	Combining Genotype Improvement and Statistical Media Optimization for Isoprenoid Production in E. coli. PLoS ONE, 2013, 8, e75164.	2.5	47
186	Enhancing hydrogenâ€dependent growth of and carbon dioxide fixation by <i>Clostridium ljungdahlii</i> through nitrate supplementation. Biotechnology and Bioengineering, 2019, 116, 294-306.	3.3	46
187	Effect of spatial inhomogeneities on the coexistence of competing microbial populations. Biotechnology and Bioengineering, 1979, 21, 1491-1498.	3.3	45
188	Effects of phosphoenol pyruvate carboxylase deficiency on metabolism and lysine production in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 1994, 40, 857-863.	3.6	45
189	Overproduction of Trehalose: Heterologous Expression of Escherichia coli Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2004, 70, 370-376.	3.1	45
190	Heterologous expression and characterization of bacterial 2-C-methyl-d-erythritol-4-phosphate pathway in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2013, 97, 5753-5769.	3.6	45
191	Mechanistic Insights into Taxadiene Epoxidation by Taxadiene-5α-Hydroxylase. ACS Chemical Biology, 2016, 11, 460-469.	3.4	45
192	Dynamics of gene silencing by RNA interference. Biotechnology and Bioengineering, 2004, 88, 121-132.	3.3	44
193	Identification of gene disruptions for increased polyâ€3â€hydroxybutyrate accumulation in <i>Synechocystis</i> PCC 6803. Biotechnology Progress, 2009, 25, 1236-1243.	2.6	44
194	Downstream reactions and engineering in the microbially reconstituted pathway for Taxol. Applied Microbiology and Biotechnology, 2012, 94, 841-849.	3.6	44
195	Development of a formaldehyde biosensor with application to synthetic methylotrophy. Biotechnology and Bioengineering, 2018, 115, 206-215.	3.3	44
196	Metabolic engineering as an integrating platform for strain development. Current Opinion in Microbiology, 2001, 4, 336-340.	5.1	43
197	Effect of Pyruvate Carboxylase Overexpression on the Physiology of Corynebacterium glutamicum. Applied and Environmental Microbiology, 2002, 68, 5422-5428.	3.1	43
198	Elucidation of Cellular Metabolism Via Metabolomics and Stable-Isotope Assisted Metabolomics. Current Pharmaceutical Biotechnology, 2011, 12, 1075-1086.	1.6	43

#	Article	IF	CITATIONS
199	Growth factor and Bcl-2 mediated survival during abortive proliferation of hybridoma cell line. Biotechnology and Bioengineering, 1998, 57, 164-171.	3.3	42
200	Enhanced Biosynthesis of Hyaluronic Acid Using Engineered <i>Corynebacterium glutamicum</i> Via Metabolic Pathway Regulation. Biotechnology Journal, 2017, 12, 1700191.	3.5	42
201	13C Isotope-Assisted Methods for Quantifying Glutamine Metabolism in Cancer Cells. Methods in Enzymology, 2014, 542, 369-389.	1.0	41
202	A note on the optimality criteria for maximum biomass production in a fed-batch fermentor. Biotechnology and Bioengineering, 1984, 26, 1261-1264.	3.3	40
203	Metabolic engineering. , 1998, 58, 119-120.		40
204	Metabolic engineering: Perspective of a chemical engineer. AICHE Journal, 2002, 48, 920-926.	3.6	40
205	Evaluation of regression models in metabolic physiology: predicting fluxes from isotopic data without knowledge of the pathway. Metabolomics, 2006, 2, 41-52.	3.0	40
206	Metabolic engineering of Escherichia coli for the production of L-malate from xylose. Metabolic Engineering, 2018, 48, 25-32.	7.0	40
207	Accessing Nature's diversity through metabolic engineering and synthetic biology. F1000Research, 2016, 5, 397.	1.6	39
208	Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production. Applied Microbiology and Biotechnology, 2015, 99, 3825-3837.	3.6	38
209	Mitochondrial membrane potential differentiates cells resistant to apoptosis in hybridoma cultures. FEBS Journal, 2000, 267, 6534-6540.	0.2	37
210	Statistical Experimental Design Guided Optimization of a One-Pot Biphasic Multienzyme Total Synthesis of Amorpha-4,11-diene. PLoS ONE, 2013, 8, e79650.	2.5	37
211	Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli. Metabolic Engineering, 2016, 35, 1-8.	7.0	37
212	Analysis of operating data for evaluation, diagnosis and control of batch operations. Journal of Process Control, 1994, 4, 179-194.	3.3	36
213	Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2010, 88, 265-275.	3.6	36
214	Artificial intelligence in the development and design of biochemical processes. Trends in Biotechnology, 1986, 4, 241-249.	9.3	35
215	Limitations in converting waste gases to fuels and chemicals. Current Opinion in Biotechnology, 2019, 59, 39-45.	6.6	34
216	Enzymes in biotechnology: Critical platform technologies for bioprocess development. Current Opinion in Biotechnology, 2021, 69, 91-102.	6.6	34

#	Article	IF	CITATIONS
217	BIOCHEMISTRY: How to Make a Superior Cell. Science, 2001, 292, 2024-2025.	12.6	34
218	Mining of Biological Data II: Assessing Data Structure and Class Homogeneity by Cluster Analysis. Metabolic Engineering, 2000, 2, 228-238.	7.0	33
219	Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integrative Biology (United Kingdom), 2015, 7, 869-882.	1.3	33
220	Designing a New Entry Point into Isoprenoid Metabolism by Exploiting Fructose-6-Phosphate Aldolase Side Reactivity of Escherichia coli. ACS Synthetic Biology, 2017, 6, 1416-1426.	3.8	33
221	Engineering Yarrowia lipolytica for the utilization of acid whey. Metabolic Engineering, 2020, 57, 43-50.	7.0	33
222	Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles. Metabolites, 2012, 2, 891-912.	2.9	32
223	Synthesis of high-titer alka(e)nes in Yarrowia lipolytica is enabled by a discovered mechanism. Nature Communications, 2020, 11, 6198.	12.8	32
224	Analysis of the pathway structure of metabolic networks. Journal of Biotechnology, 1999, 71, 207-223.	3.8	31
225	Metabolic flux distributions inCorynebacterium glutamicum during growth and lysine overproduction. Biotechnology and Bioengineering, 2000, 67, 872-885.	3.3	31
226	Optimizing bioconversion pathways through systems analysis and metabolic engineering. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1801-1806.	7.1	31
227	Engineering <i>Yarrowia lipolytica</i> for poly-3-hydroxybutyrate production. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 605-612.	3.0	31
228	Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions. Metabolic Engineering, 2020, 62, 106-115.	7.0	31
229	Constructing an ethanol utilization pathway in Escherichia coli to produce acetyl-CoA derived compounds. Metabolic Engineering, 2021, 65, 223-231.	7.0	31
230	Use of various measurements for biomass estimation. Biotechnology Progress, 1992, 8, 81-84.	2.6	30
231	Toward Biosynthetic Design and Implementation of Escherichia coli-Derived Paclitaxel and Other Heterologous Polyisoprene Compounds. Applied and Environmental Microbiology, 2012, 78, 2497-2504.	3.1	30
232	Cell free biosynthesis of isoprenoids from isopentenol. Biotechnology and Bioengineering, 2019, 116, 3269-3281.	3.3	30
233	Genomic dissection for characterization of cancerous oral epithelium tissues using transcription profiling. Oral Oncology, 2003, 39, 259-268.	1.5	29
234	Statistical mechanical estimation of the free energy of formation of E. coli biomass for use with macroscopic bioreactor balances. Biotechnology and Bioengineering, 1983, 25, 2149-2163.	3.3	28

#	Article	IF	Citations
235	Metabolic engineering: a new frontier of chemical reaction engineering. Chemical Engineering Science, 2002, 57, 2595-2602.	3.8	28
236	Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Cell Systems, 2019, 9, 534-547.e5.	6.2	28
237	Studies on on-line bioreactor identification. III. Sensitivity problems with respiratory and heat evolution measurements. Biotechnology and Bioengineering, 1984, 26, 1198-1208.	3.3	27
238	Adaptive estimation of bioreactors: monitoring plasmid instability. Chemical Engineering Science, 1989, 44, 41-48.	3.8	27
239	Use of regulated secretion in protein production from animal cells: An evaluation with the AtT-20 model cell line. Biotechnology and Bioengineering, 1990, 35, 771-780.	3.3	27
240	Studies of transcriptional state heterogeneity in sporulating cultures ofbacillus subtilis. Biotechnology and Bioengineering, 1995, 47, 234-242.	3.3	26
241	Metabolic engineering: Enabling technology for biofuels production. Metabolic Engineering, 2008, 10, 293-294.	7.0	26
242	Kinetic isotope effects significantly influence intracellular metabolite ¹³ C labeling patterns and flux determination. Biotechnology Journal, 2013, 8, 1080-1089.	3.5	26
243	Fragment Formula Calculator (FFC): Determination of Chemical Formulas for Fragment Ions in Mass Spectrometric Data. Analytical Chemistry, 2014, 86, 2221-2228.	6.5	26
244	Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas. Metabolic Engineering, 2017, 41, 173-181.	7.0	26
245	Experimental determination of group flux control coefficients in metabolic networks. , 1998, 58, 149-153.		24
246	Mining of Biological Data I: Identifying Discriminating Features Via Mean Hypothesis Testing. Metabolic Engineering, 2000, 2, 218-227.	7.0	24
247	A Novel Bioreactor-Cell Precipitator Combination for High-Cell Density, High-Flow Fermentations. Biotechnology Progress, 1985, 1, 250-259.	2.6	23
248	Sequence of the Corynebacterium glutamicum pyruvate carboxylase gene. Applied Microbiology and Biotechnology, 1998, 50, 346-352.	3.6	23
249	Ion-Trap Mass Spectrometry Used in Combination with Gas Chromatography for High-Resolution Metabolic Flux Determination. BioTechniques, 2003, 34, 832-849.	1.8	23
250	Identifying Functionally Important Mutations from Phenotypically Diverse Sequence Data. Applied and Environmental Microbiology, 2006, 72, 3696-3701.	3.1	23
251	<i>In Vitro</i> Metabolic Engineering of Amorpha-4,11-diene Biosynthesis at Enhanced Rate and Specific Yield of Production. ACS Synthetic Biology, 2017, 6, 1691-1700.	3.8	23
252	Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth. Blood, 2022, 139, 502-522.	1.4	23

#	Article	IF	CITATIONS
253	Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes. Metabolic Engineering, 2019, 51, 20-31.	7.0	22
254	A model of secretory protein trafficking in recombinant AtT-20 cells. Biotechnology and Bioengineering, 1991, 38, 280-295.	3.3	21
255	Flow cytometric study of differentiating cultures of Bacillus subtilis. Cytometry, 1995, 20, 324-333.	1.8	21
256	Knowledge-based systems, artificial neural networks and pattern recognition: applications to biotechnological processes. Current Opinion in Biotechnology, 1996, 7, 231-234.	6.6	21
257	Metabolic engineering strategies to overcome precursor limitations in isoprenoid biosynthesis. Current Opinion in Biotechnology, 2020, 66, 171-178.	6.6	21
258	Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks. Science Advances, 2021, 7, .	10.3	21
259	Stable Competitive Coexistence in a Continuous Fermentor with Size-Selective Properties. Biotechnology Progress, 1985, 1, 260-269.	2.6	20
260	Intrinsic growth and fermentation rates of alginate-entrapped Saccharomyces cerevisiae. Biotechnology Progress, 1990, 6, 341-348.	2.6	20
261	Metabolic engineering of Escherichia coli for the synthesis of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metabolic Engineering, 2017, 44, 38-44.	7.0	20
262	Metabolic Engineering. , 2005, 100, 1-17.		19
263	Reevaluating synthesis by biology. Current Opinion in Microbiology, 2010, 13, 371-376.	5.1	19
264	Directed Evolution of Promoters and Tandem Gene Arrays for Customizing RNA Synthesis Rates and Regulation. Methods in Enzymology, 2011, 497, 135-155.	1.0	19
265	Metabolic engineering: enabling technology of a bio-based economy. Current Opinion in Chemical Engineering, 2012, 1, 355-362.	7.8	19
266	The effect of growth rate delays in substrate-inhibited kinetics on the optimal profile of fed-batch reactors. Biotechnology and Bioengineering, 1986, 28, 356-361.	3.3	18
267	Physiological, biochemical, and mathematical studies of micro-aerobic continuous ethanol fermentation bySaccharomyces cerevisiae. II: Intracellular metabolite and enzyme assays at steady state chemostat cultures. Biotechnology and Bioengineering, 1990, 36, 1020-1029.	3.3	18
268	Expanding the concepts and tools of metabolic engineering to elucidate cancer metabolism. Biotechnology Progress, 2012, 28, 1409-1418.	2.6	18
269	ESTIMATION OF UPPER BOUNDS FOR THE RATES OF ENZYMATIC REACTIONS. Chemical Engineering Communications, 1990, 93, 211-236.	2.6	17
270	Heterologous production of \hat{l}_{\pm} -Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method. Bioresource Technology, 2021, 341, 125782.	9.6	17

#	Article	IF	CITATIONS
271	The dynamics of commensalism. Biotechnology and Bioengineering, 1981, 23, 2243-2255.	3.3	16
272	Application of radiolabeled tracers to biocatalytic flux analysis. FEBS Journal, 2001, 268, 4950-4960.	0.2	16
273	Regulation of mouse hepatic genes in response to diet induced obesity, insulin resistance and fasting induced weight reduction. Nutrition and Metabolism, 2005, 2, 15.	3.0	16
274	Key Role of the Carboxyl Terminus of Hyaluronan Synthase in Processive Synthesis and Size Control of Hyaluronic Acid Polymers. Biomacromolecules, 2017, 18, 1064-1073.	5.4	16
275	Physiological, biochemical, and mathematical studies of micro-aerobic continuous ethanol fermentation bySaccharomyces cerevisiae. III: Mathematical model of cellular energetics and catabolism. Biotechnology and Bioengineering, 1990, 36, 1030-1040.	3.3	15
276	A GFP-based screen for growth-arrested, recombinant protein-producing cells. Biotechnology and Bioengineering, 2002, 79, 74-82.	3.3	15
277	Extinction probabilities in microbial predation: A birth and death approach. Bulletin of Mathematical Biology, 1981, 43, 165-181.	1.9	14
278	A group contribution method for the estimation of equilibrium constants for biochemical reactions. Biotechnology Letters, 1988, 2, 23-28.	0.5	14
279	Effect of insulin stimulation on the proliferation and death of Chinese hamster ovary cells. Biotechnology and Bioengineering, 2000, 70, 421-427.	3.3	14
280	Enhancing Stress Resistance and Production Phenotypes Through Transcriptome Engineering. Methods in Enzymology, 2010, 470, 509-532.	1.0	14
281	Metabolic Engineering: The Ultimate Paradigm for Continuous Pharmaceutical Manufacturing. ChemSusChem, 2014, 7, 1847-1853.	6.8	14
282	Coexistence of S. cerevisiae and E. coli in chemostat under substrate competition and product inhibition. Biotechnology and Bioengineering, 1986, 28, 1742-1752.	3.3	13
283	Culture instability of auxotrophic amino acid producers. Biotechnology and Bioengineering, 1992, 40, 75-85.	3.3	13
284	Metabolic engineering challenges in the post-genomic era. Chemical Engineering Science, 2004, 59, 5009-5017.	3.8	13
285	Spatially addressable protein array: ssDNAâ€directed assembly for antibody microarray. Electrophoresis, 2007, 28, 4638-4644.	2.4	13
286	Using biopolymer bodies for encapsulation of hydrophobic products in bacterium. Metabolic Engineering, 2020, 61, 206-214.	7.0	13
287	Isotope tracing in health and disease. Current Opinion in Biotechnology, 2022, 76, 102739.	6.6	13
288	Extension of Sp2/0 hybridoma cell viability through interleukin-6 supplementation. , 1997, 55, 439-446.		12

#	Article	IF	CITATIONS
289	Metabolic Flux Analysis. , 2000, , 106-124.		12
290	Optimization of Protein Fusion Partner Length for Maximizing in Vitro Translation of Peptides. Biotechnology Progress, 2007, 23, 444-451.	2.6	12
291	Tracking cellular metabolomics in lipoapoptosis- and steatosis-developing liver cells. Molecular BioSystems, 2011, 7, 1409.	2.9	12
292	Glyceraldehyde 3â€phosphate dehydrogenase modulates nonoxidative pentose phosphate pathway to provide anabolic precursors in hypoxic tumor cells. AICHE Journal, 2018, 64, 4289-4296.	3.6	12
293	Deep learning classification of lipid droplets in quantitative phase images. PLoS ONE, 2021, 16, e0249196.	2.5	12
294	Dynamics of mixed cultures of microorganisms: Some topological considerations. AICHE Journal, 1980, 26, 802-816.	3.6	11
295	Mapping phenotypic landscapes using DNA micro-arrays. Metabolic Engineering, 2004, 6, 177-185.	7.0	11
296	Optimization of the Isopentenol Utilization Pathway for Isoprenoid Synthesis in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 3512-3520.	5.2	11
297	Multiple episodes of induced secretion of human growth hormone from recombinant AtT-20 cells. Cytotechnology, 1990, 4, 111-119.	1.6	10
298	Development of a single-pass ceramic matrix bioreactor for large-scale mammalian cell culture. Biotechnology and Bioengineering, 1992, 40, 1056-1068.	3.3	10
299	Mitochondrial Membrane Potential Selects Hybridomas Yielding High Viability in Fed-Batch Cultures. Biotechnology Progress, 2002, 18, 1-5.	2.6	10
300	Prediction of transcriptional profiles of Synechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnology and Bioengineering, 2003, 84, 855-863.	3.3	10
301	A semi-quantitative high-throughput screening method for microbial l-tyrosine production in microtiter plates. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 807-811.	3.0	10
302	Restoration of Growth Phenotypes of <i>Escherichia coli</i> DH5α in Minimal Media through Reversal of a Point Mutation in <i>purB</i> . Applied and Environmental Microbiology, 2010, 76, 6307-6309.	3.1	10
303	Stimulation of MC38 tumor growth by insulin analog X10 involves the serine synthesis pathway. Endocrine-Related Cancer, 2012, 19, 557-574.	3.1	10
304	Dissecting Mammalian Cell Metabolism through ¹³ C- and ² H-Isotope Tracing: Interpretations at the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Systems Levels. Industrial & Dispersion of the Molecular and Dispersion o	3.7	10
305	Protein engineering strategies for microbial production of isoprenoids. Metabolic Engineering Communications, 2020, 11 , e00129.	3.6	10
306	Enabling commercial success of industrial biotechnology. Science, 2021, 374, 1563-1565.	12.6	10

#	Article	IF	CITATIONS
307	Linking Hepatic Transcriptional Changes to High–Fat Diet Induced Physiology for Diabetes-Prone and Obese-Resistant Mice. Cell Cycle, 2007, 6, 1631-1638.	2.6	9
308	Method for Designing and Optimizing Random-Search Libraries for Strain Improvement. Applied and Environmental Microbiology, 2010, 76, 5541-5546.	3.1	9
309	Monoterpenoid biosynthesis by engineered microbes. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	9
310	Partitioning metabolism between growth and product synthesis for coordinated production of wax esters in <i>Acinetobacter baylyi</i> i> ADP1. Biotechnology and Bioengineering, 2021, 118, 2283-2292.	3.3	9
311	Formal modeling of approximate relations in biochemical systems. Biotechnology and Bioengineering, 1989, 34, 196-206.	3.3	8
312	Cyclic Operation of Ceramic-Matrix Animal Cell Bioreactors for Controlled Secretion of an Endocrine Hormone. A Comparison of Single-Pass and Recycle Modes of Operation. Biotechnology Progress, 1996, 12, 837-846.	2.6	8
313	Growth and fermentation model for alginate-entrapped Saccharomyces cerevisiae. Biotechnology Progress, 1990, 6, 349-356.	2.6	7
314	Development and Scaleup of Controlled Secretion Processes for Improved Product Recovery in Animal Cell Culture. Annals of the New York Academy of Sciences, 1992, 665, 81-93.	3.8	6
315	Chemical and Biological Engineering. Chemical Engineering Science, 2003, 58, 3291-3293.	3.8	6
316	After a Decade of Progress, an Expanded Role for Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, 2001, 73, 1-8.	1.1	6
317	Optimal control policy for substrate inhibited kinetics with enzyme deactivation in an isothermal CSTR. AICHE Journal, 1983, 29, 417-424.	3.6	5
318	Exploiting Bioprocessing Fluctuations to Elicit the Mechanistics of De Novo Lipogenesis in Yarrowia lipolytica. PLoS ONE, 2017, 12, e0168889.	2.5	5
319	A decomposition method for the stability analysis of large microbial systems. Theoretical Population Biology, 1979, 16, 126-143.	1.1	4
320	Simulation study of anaerobic digestion control. Biotechnology and Bioengineering, 1986, 28, 1138-1153.	3.3	4
321	Oxygen Transfer in Membrane-Ceramic Composite Materials For Immobilized-Cell Monolithic Reactors. Biotechnology Progress, 1986, 2, 98-104.	2.6	4
322	Quantitative assay for low levels of L-threonine in amino acid fermentation broths. Biotechnology and Bioengineering, 1990, 35, 1169-1173.	3.3	4
323	Metabolic engineering: Developing new products and processes by constructing functioning biosynthetic pathwaysin vivo. AICHE Journal, 2005, 51, 3091-3093.	3.6	4
324	Linking physiology and transcriptional profiles by quantitative predictive models. Biotechnology and Bioengineering, 2007, 98, 252-260.	3.3	4

#	Article	IF	CITATIONS
325	Engineering Microbes to Synthesize Plant Isoprenoids. Methods in Enzymology, 2016, 575, 225-245.	1.0	4
326	Harnessing a methaneâ€fueled, sedimentâ€free mixed microbial community for utilization of distributed sources of natural gas. Biotechnology and Bioengineering, 2018, 115, 1450-1464.	3. 3	4
327	Differential Substrate Use in EGF―and Oncogenic KRAS‧timulated Human Mammary Epithelial Cells. FEBS Journal, 2021, 288, 5629-5649.	4.7	4
328	MODULAR DESIGN OF HEAT EXCHANGER NETWORKS. Chemical Engineering Communications, 1980, 4, 119-126.	2.6	3
329	Biochemical engineering: Bridging the gap between gene and product. Current Opinion in Biotechnology, 2000, 11, 169-170.	6.6	3
330	Profiling RNA Polymerase–Promoter Interaction by Using ssDNA–dsDNA Probe on a Surface Addressable Microarray. ChemBioChem, 2007, 8, 1667-1670.	2.6	3
331	Metabolic engineering: enabling technology for biofuels production. Wiley Interdisciplinary Reviews: Energy and Environment, 2012, 1, 165-172.	4.1	3
332	Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes. International Journal of Obesity, 2021, , .	3.4	3
333	Application of Macroscopic Balances and Bioenergetics of Growth to the On-Line Identification of Biological Reactors. Annals of the New York Academy of Sciences, 1986, 469, 332-349.	3.8	2
334	Emerging directions in computer applications to biotechnology: Upgrading the information content of biological data. Annual Reviews in Control, 1999, 23, 61-69.	7.9	2
335	Flow injection analysis for simultaneous quantification of prolactin concentration and glycosylation macroheterogeneity in cell culture samples. , 2000, 34, 237-242.		2
336	Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnology and Bioengineering, 1999, 62, 324-335.	3. 3	2
337	Effects of phosphoenol pyruvate carboxylase deficiency on metabolism and lysine production in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 1994, 40, 857-863.	3 . 6	2
338	Analysis of secretory dynamics and development of media for the controlled secretion of insulin-related peptides from \hat{I}^2TC -3 insulinoma cells., 1997, 53, 274-282.		1
339	NANOSTRUCTURED DENDRIMER MODIFIED GLASS SURFACES FOR PROTEIN MICROARRAY. International Journal of Nanoscience, 2007, 06, 161-165.	0.7	1
340	Systems-Level Analysis of Cancer Metabolism. , 2012, , 349-381.		1
341	Letter from AIChE President. Bioengineering and Translational Medicine, 2016, 1, 3-3.	7.1	1
342	Theoretical analysis of natural gas recovery from marginal wells with a deep well reactor. AICHE Journal, 2017, 63, 3642-3650.	3.6	1

#	Article	IF	CITATIONS
343	Epigenetic Activation of the pH Regulator MCT4 in Acute Myeloid Leukemia Exploits a Fundamental Metabolic Process of Enhancing Cell Growth through Proton Shifting. Blood, 2019, 134, 3765-3765.	1.4	1
344	AN ALTERNATIVE APPROACH TO THE OPTIMIZATION OF CONSTRAINED DESIGN PROBLEMS. Chemical Engineering Communications, 1980, 4, 173-179.	2.6	0
345	Effects of the \hat{I}^2 -lactamase gene and orientation of the kanamycin-resistance gene in plasmid pCED3 on the growth of Bacillus subtilis. Journal of Bioscience and Bioengineering, 1991, 72, 244-248.	0.9	O
346	"Database miningâ€i¸•mit Hilfe von Trends, Wavelet-Transformation und Klassifizierungsbämen. Chemie-Ingenieur-Technik, 1994, 66, 541-543.	0.8	0
347	Processing and secretion of insulin-related peptides in an insulinoma cell line. , 1997, 53, 283-289.		O
348	Emerging Directions in Computer Applications to Biotechnology: Upgrading the Information Content of Biological Data. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 7-15.	0.4	0
349	Metabolic Effects on Recombinant Interferon-Î ³ Glycosylation in Continuous Culture of Chinese Hamster Ovary Cells. IBM Journal of Research and Development, 2000, 44, 770-783.	3.1	O
350	Insight out: Advances in understanding metabolism achieved by high-throughput mass spectrometry. Biomedical Spectroscopy and Imaging, 2013, 2, 1-8.	1.2	0
351	Engineering E.Âcoli to Grow on Methanol. Joule, 2020, 4, 2070-2072.	24.0	O
352	Regression models for metabolic physiology: Predicting fluxes from isotopic data without knowledge of the pathway. FASEB Journal, 2006, 20, A410.	0.5	0
353	Manipulation of Dietary Essential Amino Acids Prevents Highâ€Fat Induced Nonâ€Alcoholic Fatty Liver in Mice. FASEB Journal, 2008, 22, 614.17.	0.5	O
354	Rational enzyme redesign for enhancing activity and selectivity of heterologous taxane oxidation in engineered E. coli. FASEB Journal, 2013, 27, 998.3.	0.5	0