Hongbo Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575338/publications.pdf Version: 2024-02-01

HONGRO WU

#	Article	IF	CITATIONS
1	A Wellâ€Mixed Phase Formed by Two Compatible Nonâ€Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Advanced Materials, 2021, 33, e2101733.	21.0	354
2	Solutionâ€Processed Organic Solar Cells with High Openâ€Circuit Voltage of 1.3 V and Low Nonâ€Radiative Voltage Loss of 0.16 V. Advanced Materials, 2020, 32, e2002122.	21.0	168
3	Hot Hydrocarbonâ€Solvent Slotâ€Die Coating Enables Highâ€Efficiency Organic Solar Cells with Temperatureâ€Dependent Aggregation Behavior. Advanced Materials, 2020, 32, e2002302.	21.0	139
4	A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells. Energy and Environmental Science, 2021, 14, 5009-5016.	30.8	119
5	High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 2021, 4, 2542-2552.	10.0	118
6	Kinetics Manipulation Enables Highâ€Performance Thick Ternary Organic Solar Cells via R2Râ€Compatible Slotâ€Die Coating. Advanced Materials, 2022, 34, e2105114.	21.0	72
7	Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses. Energy and Environmental Science, 2020, 13, 2467-2479.	30.8	69
8	Energetics and Energy Loss in 2D Ruddlesden–Popper Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000687.	19.5	68
9	Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nature Communications, 2021, 12, 6679.	12.8	56
10	Crystalline Cooperativity of Donor and Acceptor Segments in Double able Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 15532-15540.	13.8	53
11	Improving quantum efficiency in organic solar cells with a small energetic driving force. Journal of Materials Chemistry A, 2021, 9, 19770-19777.	10.3	39
12	Additiveâ€Induced Synergies of Defect Passivation and Energetic Modification toward Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101394.	19.5	36
13	High-efficiency ternary nonfullerene organic solar cells with record long-term thermal stability. Journal of Materials Chemistry A, 2020, 8, 22907-22917.	10.3	27
14	The first application of isoindigo-based polymers in non-fullerene organic solar cells. Science China Chemistry, 2020, 63, 1262-1271.	8.2	20
15	Small Band gap Boron Dipyrromethene-Based Conjugated Polymers for All-Polymer Solar Cells: The Effect of Methyl Units. Macromolecules, 2019, 52, 8367-8373.	4.8	18
16	Different Morphology Dependence for Efficient Indoor Organic Photovoltaics: The Role of the Leakage Current and Recombination Losses. ACS Applied Materials & Interfaces, 2021, 13, 44604-44614.	8.0	13
17	Tuning Acceptor Composition in Ternary Organic Photovoltaics–Impact of Domain Purity on Nonâ€Radiative Voltage Losses. Advanced Energy Materials, 2022, 12, .	19.5	13
18	Designing High-Performance Nonfused Ring Electron Acceptors <i>via</i> Synergistically Adjusting Side Chains and Electron-Withdrawing End-Groups. ACS Applied Materials & Interfaces, 2022, 14, 21287-21294.	8.0	12

Нонсво Wu

#	Article	IF	CITATIONS
19	Crystalline Cooperativity of Donor and Acceptor Segments in Doubleâ€Cable Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie, 2019, 131, 15678-15686.	2.0	11
20	Strengthening the Intermolecular Interaction of Prototypical Semicrystalline Conjugated Polymer Enables Improved Photocurrent Generation at the Heterojunction. Macromolecular Rapid Communications, 2022, 43, e2100871.	3.9	9
21	Interfacial energetic disorder induced by the molecular packing structure at conjugated polymer-based donor/acceptor heterojunctions. Journal of Materials Chemistry C, 2021, 9, 13761-13769.	5.5	4
22	Effective Strategy to Improve Contact Selectivity in Organic Solar Cells. ACS Applied Energy Materials, 0, , .	5.1	1