Scott A Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575305/publications.pdf Version: 2024-02-01

SCOTT & HUCHES

#	Article	IF	CITATIONS
1	Precisely computing bound orbits of spinning bodies around black holes. II. Generic orbits. Physical Review D, 2022, 105, .	4.7	11
2	Precisely computing bound orbits of spinning bodies around black holes. I. General framework and results for nearly equatorial orbits. Physical Review D, 2022, 105, .	4.7	10
3	Measuring quasinormal mode amplitudes with misaligned binary black hole ringdowns. Physical Review D, 2022, 105, .	4.7	7
4	Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis. Physical Review Letters, 2021, 126, 051102.	7.8	52
5	Adiabatic waveforms for extreme mass-ratio inspirals via multivoice decomposition in time and frequency. Physical Review D, 2021, 103, .	4.7	44
6	Divergences in gravitational-wave emission and absorption from extreme mass ratio binaries. Physical Review D, 2021, 104, .	4.7	3
7	Probing the nature of black holes: Deep in the mHz gravitational-wave sky. Experimental Astronomy, 2021, 51, 1385-1416.	3.7	29
8	Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis. Physical Review D, 2021, 104, .	4.7	52
9	Tidal heating as a discriminator for horizons in extreme mass ratio inspirals. Physical Review D, 2020, 101, .	4.7	48
10	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	2.0	198
11	Learning about Black Hole Binaries from their Ringdown Spectra. Physical Review Letters, 2019, 123, 161101.	7.8	36
12	Exciting black hole modes via misaligned coalescences. I. Inspiral, transition, and plunge trajectories using a generalized Ori-Thorne procedure. Physical Review D, 2019, 100, .	4.7	31
13	Exciting black hole modes via misaligned coalescences. II. The mode content of late-time coalescence waveforms. Physical Review D, 2019, 100, .	4.7	30
14	Bound orbits of a slowly evolving black hole. Physical Review D, 2019, 100, .	4.7	13
15	Tidal Resonance in Extreme Mass-Ratio Inspirals. Physical Review Letters, 2019, 123, 101103.	7.8	56
16	Strong-field tidal distortions of rotating black holes. III. Embeddings in hyperbolic three-space. Physical Review D, 2017, 96, .	4.7	2
17	Adiabatic and post-adiabatic approaches to extreme mass ratio inspiral. , 2017, , .		4
18	Resonantly enhanced and diminished strong-field gravitational-wave fluxes. Physical Review D, 2014, 89, .	4.7	41

SCOTT A HUGHES

#	Article	IF	CITATIONS
19	Strong-field tidal distortions of rotating black holes: Formalism and results for circular, equatorial orbits. Physical Review D, 2014, 90, .	4.7	28
20	Census of transient orbital resonances encountered during binary inspiral. Physical Review D, 2014, 89, .	4.7	32
21	Small mass plunging into a Kerr black hole: Anatomy of the inspiral-merger-ringdown waveforms. Physical Review D, 2014, 90, .	4.7	52
22	Black hole binary inspiral and trajectory dominance. Physical Review D, 2013, 88, .	4.7	5
23	Modeling the horizon-absorbed gravitational flux for equatorial-circular orbits in Kerr spacetime. Physical Review D, 2013, 88, .	4.7	42
24	Modeling multipolar gravitational-wave emission from small mass-ratio mergers. Physical Review D, 2012, 85, .	4.7	63
25	Extreme mass-ratio inspirals in the effective-one-body approach: Quasicircular, equatorial orbits around a spinning black hole. Physical Review D, 2011, 83, .	4.7	75
26	Measuring parameters of massive black hole binaries with partially aligned spins. Physical Review D, 2011, 84, .	4.7	43
27	Spacetime and orbits of bumpy black holes. Physical Review D, 2010, 81, .	4.7	104
28	Binary black hole merger gravitational waves and recoil in the large mass ratio limit. Physical Review D, 2010, 81, .	4.7	54
29	Falloff of radiated energy in black hole spacetimes. Physical Review D, 2010, 82, .	4.7	3
30	Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits. Physical Review D, 2008, 78, .	4.7	64
31	Towards adiabatic waveforms for inspiral into Kerr black holes: A new model of the source for the time domain perturbation equation. Physical Review D, 2007, 76, .	4.7	87
32	"Kludge―gravitational waveforms for a test-body orbiting a Kerr black hole. Physical Review D, 2007, 75, .	4.7	151
33	Gravitational wave snapshots of generic extreme mass ratio inspirals. Physical Review D, 2006, 73, .	4.7	169
34	Computing inspirals in Kerr in the adiabatic regime: I. The scalar case. Classical and Quantum Gravity, 2005, 22, S801-S846.	4.0	73
35	Gravitational Radiation Reaction and Inspiral Waveforms in the Adiabatic Limit. Physical Review Letters, 2005, 94, 221101.	7.8	79
36	Rotating black hole orbit functionals in the frequency domain. Physical Review D, 2004, 69, .	4.7	106

SCOTT A HUGHES

#	Article	IF	CITATIONS
37	Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits. Physical Review D, 2004, 69, .	4.7	152
38	Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms. Physical Review D, 2001, 64, .	4.7	164
39	Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. Physical Review D, 2000, 61, .	4.7	223
40	Measuring gravitational waves from binary black hole coalescences. II. The waves' information and its extraction, with and without templates. Physical Review D, 1998, 57, 4566-4587.	4.7	191