Gleason Kk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575285/publications.pdf

Version: 2024-02-01

10650 19470 20,607 360 74 122 citations h-index g-index papers 392 392 392 18798 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Recent Progress in Conjugated Conducting and Semiconducting Polymers for Energy Devices. Energies, 2022, 15, 3661.	1.6	6
2	Conjugated polymers for flexible energy harvesting and storage devices., 2022,, 283-311.		1
3	Optimizing the Optoelectronic Properties of Faceâ€On Oriented Poly(3,4â€Ethylenedioxythiophene) via Waterâ€Assisted Oxidative Chemical Vapor Deposition. Advanced Functional Materials, 2021, 31, 2008712.	7.8	24
4	Chemical vapour deposition. Nature Reviews Methods Primers, 2021, 1, .	11.8	244
5	Humidityâ€Initiated Gas Sensors for Volatile Organic Compounds Sensing. Advanced Functional Materials, 2021, 31, 2101310.	7.8	23
6	Waterâ€Assisted Growth: Optimizing the Optoelectronic Properties of Faceâ€On Oriented Poly(3,4â€Ethylenedioxythiophene) via Waterâ€Assisted Oxidative Chemical Vapor Deposition (Adv. Funct.) Tj E	Т Qq® 0 0 і	rg B IT /Overloc
7	Controlled Release Utilizing Initiated Chemical Vapor Deposited (iCVD) of Polymeric Nanolayers. Frontiers in Bioengineering and Biotechnology, 2021, 9, 632753.	2.0	19
8	Synthesis of surface-anchored stable zwitterionic films for inhibition of biofouling. Materials Chemistry and Physics, 2020, 239, 121971.	2.0	11
9	Toward three-dimensional hybrid inorganic/organic optoelectronics based on GaN/oCVD-PEDOT structures. Nature Communications, 2020, 11, 5092.	5.8	19
10	Fluoropolymers by initiated chemical vapor deposition (iCVD)., 2020,, 113-135.		2
11	Ultrathin Conformal oCVD PEDOT Coatings on Carbon Electrodes Enable Improved Performance of Redox Flow Batteries. Advanced Materials Interfaces, 2020, 7, 2000855.	1.9	22
12	Solvent-Less Vapor-Phase Fabrication of Membranes for Sustainable Separation Processes. Engineering, 2020, 6, 1432-1442.	3.2	12
13	Controlled formation of Schottky diodes on n-doped ZnO layers by deposition of p-conductive polymer layers with oxidative chemical vapor deposition. Nano Express, 2020, 1, 010013.	1.2	8
14	Nanoscale control by chemically vapour-deposited polymers. Nature Reviews Physics, 2020, 2, 347-364.	11.9	57
15	Texture and nanostructural engineering of conjugated conducting and semiconducting polymers. Materials Today Advances, 2020, 8, 100086.	2.5	49
16	Efficient, Flexible, and Ultraâ€Lightweight Inverted PbS Quantum Dots Solar Cells on Allâ€CVDâ€Growth of Parylene/Graphene/oCVD PEDOT Substrate with High Powerâ€perâ€Weight. Advanced Materials Interfaces, 2020, 7, 2000498.	1.9	24
17	Chemically vapor deposited polymer nanolayers for rapid and controlled permeation of molecules and ions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	18
18	Fundamental nanoscale surface strategies for robustly controlling heterogeneous nucleation of calcium carbonate. Journal of Materials Chemistry A, 2019, 7, 17242-17247.	5.2	23

#	Article	IF	Citations
19	Ultrathin initiated chemical vapor deposition polymer interfacial energy control for directed self-assembly hole-shrink applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 061804.	0.6	3
20	Superhydrophobic 3D Porous PTFE/TiO ₂ Hybrid Structures. Advanced Materials Interfaces, 2019, 6, 1801967.	1.9	19
21	Micro-/Nanoscale Approach for Studying Scale Formation and Developing Scale-Resistant Surfaces. ACS Applied Materials & Developing Scale Resistant Surfaces.	4.0	19
22	Ultrahighâ€Arealâ€Capacitance Flexible Supercapacitor Electrodes Enabled by Conformal P3MT on Horizontally Aligned Carbonâ€Nanotube Arrays. Advanced Materials, 2019, 31, e1901916.	11.1	89
23	Grafted Nanofilms Promote Dropwise Condensation of Low-Surface-Tension Fluids for High-Performance Heat Exchangers. Joule, 2019, 3, 1377-1388.	11.7	44
24	Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing. Langmuir, 2019, 35, 7659-7671.	1.6	21
25	Superhydrophobic Surfaces: Superhydrophobic 3D Porous PTFE/TiO2 Hybrid Structures (Adv. Mater.) Tj ETQq1 1	0.784314 1.9	rgBT /Overl
26	Tunable polytetrafluoroethylene electret films with extraordinary charge stability synthesized by initiated chemical vapor deposition for organic electronics applications. Scientific Reports, 2019, 9, 2237.	1.6	28
27	Tuning, optimization, and perovskite solar cell device integration of ultrathin poly(3,4-ethylene) Tj ETQq1 1 0.784	43]4 rgBT 4.7	Qverlock 1
28	Device Fabrication Based on Oxidative Chemical Vapor Deposition (oCVD) Synthesis of Conducting Polymers and Related Conjugated Organic Materials. Advanced Materials Interfaces, 2019, 6, 1801564.	1.9	65
29	Hall of Fame Article: Device Fabrication Based on Oxidative Chemical Vapor Deposition (oCVD) Synthesis of Conducting Polymers and Related Conjugated Organic Materials (Adv. Mater. Interfaces) Tj ETQq1 1	l 01 7 8431	4 r § BT /Over
30	Nanostructured Unsubstituted Polythiophene Films Deposited Using Oxidative Chemical Vapor Deposition: Hopping Conduction and Thermal Stability. Advanced Materials Interfaces, 2018, 5, 1701513.	1.9	10
31	Enhancing Performance Stability of Electrochemically Active Polymers by Vaporâ€Deposited Organic Networks. Advanced Functional Materials, 2018, 28, 1706028.	7.8	13
32	Molecular engineered conjugated polymer with high thermal conductivity. Science Advances, 2018, 4, eaar 3031.	4.7	165
33	Ultrathin and Conformal Initiated Chemical-Vapor-Deposited Layers of Systematically Varied Surface Energy for Controlling the Directed Self-Assembly of Block CoPolymers. Langmuir, 2018, 34, 4494-4502.	1.6	19
34	Scalable and durable polymeric icephobic and hydrate-phobic coatings. Soft Matter, 2018, 14, 3443-3454.	1.2	47
35	Growth Temperature and Electrochemical Performance in Vapor-Deposited Poly(3,4-ethylenedioxythiophene) Thin Films for High-Rate Electrochemical Energy Storage. ACS Applied Energy Materials, 2018, 1, 7093-7105.	2.5	22
36	High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Science Advances, 2018, 4, eaat5780.	4.7	167

#	Article	IF	Citations
37	A review of heterogeneous nucleation of calcium carbonate and control strategies for scale formation in multi-stage flash (MSF) desalination plants. Desalination, 2018, 442, 75-88.	4.0	108
38	Growth Rate and Cross-Linking Kinetics of Poly(divinyl benzene) Thin Films Formed via Initiated Chemical Vapor Deposition. Langmuir, 2018, 34, 6687-6696.	1.6	3
39	Shortâ€Fluorinated iCVD Coatings for Nonwetting Fabrics. Advanced Functional Materials, 2018, 28, 1707355.	7.8	77
40	Oxidative Chemical Vapor Deposition: Nanostructured Unsubstituted Polythiophene Films Deposited Using Oxidative Chemical Vapor Deposition: Hopping Conduction and Thermal Stability (Adv. Mater.) Tj ETQq0 () O r g BT /C	ve t lock 10 T
41	Organic fouling in surface modified reverse osmosis membranes: Filtration studies and subsequent morphological and compositional characterization. Journal of Membrane Science, 2017, 527, 152-163.	4.1	36
42	Monolithic Flexible Supercapacitors Integrated into Single Sheets of Paper and Membrane via Vapor Printing. Advanced Materials, 2017, 29, 1606091.	11.1	55
43	Room Temperature Sensing Achieved by GaAs Nanowires and oCVD Polymer Coating. Macromolecular Rapid Communications, 2017, 38, 1700055.	2.0	5
44	Synthesis of polymer bead nano-necklaces on aligned carbon nanotube scaffolds. Nanotechnology, 2017, 28, 24LT01.	1.3	10
45	Recent progress on submicron gas-selective polymeric membranes. Journal of Materials Chemistry A, 2017, 5, 8860-8886.	5.2	68
46	Stabilizing the Wettability of Initiated Chemical Vapor Deposited (iCVD) Polydivinylbenzene Thin Films by Thermal Annealing. Advanced Materials Interfaces, 2017, 4, 1700270.	1.9	26
47	Gas Selective Ultrathin Organic Covalent Networks Synthesized by iPECVD: Does the Central Metal Ion Matter?. Advanced Functional Materials, 2017, 27, 1606652.	7.8	9
48	Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat. Nature Nanotechnology, 2017, 12, 575-581.	15.6	155
49	CVD Polymers for Devices and Device Fabrication. Advanced Materials, 2017, 29, 1604606.	11.1	93
50	Chemical Vapor Deposition of Thin, Conductive, and Fouling-Resistant Polymeric Films. Langmuir, 2017, 33, 10623-10631.	1.6	16
51	Reversing membrane wetting in membrane distillation: comparing dryout to backwashing with pressurized air. Environmental Science: Water Research and Technology, 2017, 3, 930-939.	1.2	47
52	Stable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubes. ACS Applied Materials & Diterfaces, 2017, 9, 43287-43299.	4.0	46
53	Organic passivation of silicon through multifunctional polymeric interfaces. Solar Energy Materials and Solar Cells, 2017, 160, 470-475.	3.0	6
54	The effects of iCVD film thickness and conformality on the permeability and wetting of MD membranes. Journal of Membrane Science, 2017, 523, 470-479.	4.1	43

#	Article	IF	CITATIONS
55	Vapor deposition routes to conformal polymer thin films. Beilstein Journal of Nanotechnology, 2017, 8, 723-735.	1.5	53
56	iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties. Macromolecular Rapid Communications, 2016, 37, 446-452.	2.0	28
57	Oxidative Chemical Vapor Deposition of Neutral Hole Transporting Polymer for Enhanced Solar Cell Efficiency and Lifetime. Advanced Materials, 2016, 28, 6399-6404.	11.1	23
58	Metal–Organic Covalent Network Chemical Vapor Deposition for Gas Separation. Advanced Materials, 2016, 28, 7479-7485.	11.1	34
59	Mechanics of Graded Wrinkling. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	13
60	Ultrathin high-resolution flexographic printing using nanoporous stamps. Science Advances, 2016, 2, e1601660.	4.7	89
61	Air-stable polythiophene-based thin film transistors processed using oxidative chemical vapor deposition: Carrier transport and channel/metallization contact interface. Organic Electronics, 2016, 33, 253-262.	1.4	15
62	Gas Separation: Metal–Organic Covalent Network Chemical Vapor Deposition for Gas Separation (Adv.) Tj ETC	Qq Q Q.	BT /Overlock
63	A systematic study of the impact of hydrophobicity on the wetting of MD membranes. Journal of Membrane Science, 2016, 520, 850-859.	4.1	69
64	Chemical vapour deposition of metalloporphyrins: a simple route towards the preparation of gas separation membranes. Journal of Materials Chemistry A, 2016, 4, 18144-18152.	5. 2	22
65	Polymer Thin Films and Surface Modification by Chemical Vapor Deposition: Recent Progress. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 373-393.	3.3	77
66	Functionalizable and electrically conductive thin films formed by oxidative chemical vapor deposition (oCVD) from mixtures of 3-thiopheneethanol (3TE) and ethylene dioxythiophene (EDOT). Journal of Materials Chemistry C, 2016, 4, 3403-3414.	2.7	25
67	Combining air recharging and membrane superhydrophobicity for fouling prevention in membrane distillation. Journal of Membrane Science, 2016, 505, 241-252.	4.1	87
68	Room Temperature Resistive Volatile Organic Compound Sensing Materials Based on a Hybrid Structure of Vertically Aligned Carbon Nanotubes and Conformal oCVD/iCVD Polymer Coatings. ACS Sensors, 2016, 1, 374-383.	4.0	47
69	Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating. Langmuir, 2016, 32, 301-308.	1.6	53
70	Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter, 2016, 12, 1938-1963.	1.2	272
71	Lowâ€Dimensional Conduction Mechanisms in Highly Conductive and Transparent Conjugated Polymers. Advanced Materials, 2015, 27, 4604-4610.	11.1	103
72	Nanoscale, conformal polysiloxane thin film electrolytes for three-dimensional battery architectures. Materials Horizons, 2015, 2, 309-314.	6.4	34

#	Article	IF	Citations
73	Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings. Langmuir, 2015, 31, 6186-6196.	1.6	46
74	Designing Durable Vaporâ€Deposited Surfaces for Reduced Hydrate Adhesion. Advanced Materials Interfaces, 2015, 2, 1500003.	1.9	43
75	Conjugated Polymers: Low-Dimensional Conduction Mechanisms in Highly Conductive and Transparent Conjugated Polymers (Adv. Mater. 31/2015). Advanced Materials, 2015, 27, 4664-4664.	11.1	1
76	Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water. Langmuir, 2015, 31, 11895-11903.	1.6	23
77	Scale-up of oCVD: large-area conductive polymer thin films for next-generation electronics. Materials Horizons, 2015, 2, 221-227.	6.4	59
78	Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling. Desalination, 2015, 362, 93-103.	4.0	113
79	Photovoltaic effect by vapor-printed polyselenophene. Organic Electronics, 2015, 26, 55-60.	1.4	8
80	Small-Area, Resistive Volatile Organic Compound (VOC) Sensors Using Metal–Polymer Hybrid Film Based on Oxidative Chemical Vapor Deposition (oCVD). ACS Applied Materials & Lamp; Interfaces, 2015, 7, 16213-16222.	4.0	23
81	Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion. Materials Horizons, 2015, 2, 91-99.	6.4	88
82	Assessment by Ames test and comet assay of toxicity potential of polymer used to develop field-capable rapid-detection device to analyze environmental samples. Applied Nanoscience (Switzerland), 2015, 5, 763-769.	1.6	12
83	Ultrathin Zwitterionic Coatings for Roughnessâ€Independent Underwater Superoleophobicity and Gravityâ€Driven Oil–Water Separation. Advanced Materials Interfaces, 2015, 2, 1400489.	1.9	68
84	Desalination by Membrane Distillation using Electrospun Polyamide Fiber Membranes with Surface Fluorination by Chemical Vapor Deposition. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8225-8232.	4.0	130
85	Phase transition-induced band edge engineering of BiVO ₄ to split pure water under visible light. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13774-13778.	3.3	116
86	Organic Photovoltaic Devices: Low Substrate Temperature Encapsulation for Flexible Electrodes and Organic Photovoltaics (Adv. Energy Mater. 6/2015). Advanced Energy Materials, 2015, 5, .	10.2	1
87	Waterâ€Assisted Vapor Deposition of PEDOT Thin Film. Macromolecular Rapid Communications, 2015, 36, 1283-1289.	2.0	20
88	A Group of Cyclic Siloxane and Silazane Polymer Films as Nanoscale Electrolytes for Microbattery Architectures. Macromolecules, 2015, 48, 5222-5229.	2.2	27
89	Surface modification of reverse osmosis membranes with zwitterionic coatings: A potential strategy for control of biofouling. Surface and Coatings Technology, 2015, 279, 171-179.	2.2	34
90	Low Substrate Temperature Encapsulation for Flexible Electrodes and Organic Photovoltaics. Advanced Energy Materials, 2015, 5, 1401442.	10.2	28

#	Article	IF	Citations
91	Enhanced Optical Property with Tunable Band Gap of Crossâ€linked PEDOT Copolymers via Oxidative Chemical Vapor Deposition. Advanced Functional Materials, 2015, 25, 85-93.	7.8	55
92	Synthesis of Insulating and Semiconducting Polymer Films via Initiated Chemical Vapor Deposition. Nanoscience and Nanotechnology Letters, 2015, 7, 33-38.	0.4	2
93	Initiated Chemical Vapor Deposition and Lightâ€Responsive Crossâ€Linking of Poly(vinyl cinnamate) Thin Films. Macromolecular Rapid Communications, 2014, 35, 1345-1350.	2.0	20
94	Polymeric Interfaces: A Route Towards Sustainability Through Engineered Polymeric Interfaces (Adv.) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
95	Conformal single-layer encapsulation of PEDOT at low substrate temperature. Applied Surface Science, 2014, 323, 2-6.	3.1	6
96	Stable Dropwise Condensation for Enhancing Heat Transfer via the Initiated Chemical Vapor Deposition (iCVD) of Grafted Polymer Films. Advanced Materials, 2014, 26, 418-423.	11.1	223
97	Cross-Linking and Ultrathin Grafted Gradation of Fluorinated Polymers Synthesized via Initiated Chemical Vapor Deposition To Prevent Surface Reconstruction. Langmuir, 2014, 30, 14189-14194.	1.6	31
98	A high performance hybrid asymmetric supercapacitor via nano-scale morphology control of graphene, conducting polymer, and carbon nanotube electrodes. Journal of Materials Chemistry A, 2014, 2, 9964-9969.	5.2	57
99	Surface-modified reverse osmosis membranes applying a copolymer film to reduce adhesion of bacteria as a strategy for biofouling control. Separation and Purification Technology, 2014, 124, 117-123.	3.9	54
100	Surface modification of seawater desalination reverse osmosis membranes: Characterization studies & amp; performance evaluation. Desalination, 2014, 343, 128-139.	4.0	43
101	Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1687-1702.	1.9	16
102	Synergistic Prevention of Biofouling in Seawater Desalination by Zwitterionic Surfaces and Lowâ€Level Chlorination. Advanced Materials, 2014, 26, 1711-1718.	11.1	146
103	Optoelectronic properties of polythiophene thin films and organic TFTs fabricated by oxidative chemical vapor deposition. Journal of Materials Chemistry C, 2014, 2, 7223.	2.7	38
104	Closed Batch Initiated Chemical Vapor Deposition of Ultrathin, Functional, and Conformal Polymer Films. Langmuir, 2014, 30, 4830-4837.	1.6	19
105	Biaxially Mechanical Tuning of 2-D Reversible and Irreversible Surface Topologies through Simultaneous and Sequential Wrinkling. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2850-2857.	4.0	27
106	Advanced asymmetric supercapacitor based on conducting polymer and aligned carbon nanotubes with controlled nanomorphology. Nano Energy, 2014, 9, 176-185.	8.2	93
107	Heavily Doped poly(3,4â€ethylenedioxythiophene) Thin Films with High Carrier Mobility Deposited Using Oxidative CVD: Conductivity Stability and Carrier Transport. Advanced Functional Materials, 2014, 24, 7187-7196.	7.8	49
108	Tailoring Thickness of Conformal Conducting Polymer Decorated Aligned Carbon Nanotube Electrodes for Energy Storage. Advanced Materials Interfaces, 2014, 1, 1400076.	1.9	28

#	Article	IF	Citations
109	Revealing Amphiphilic Nanodomains of Anti-Biofouling Polymer Coatings. ACS Applied Materials & Interfaces, 2014, 6, 4705-4712.	4.0	51
110	A Route Towards Sustainability Through Engineered Polymeric Interfaces. Advanced Materials Interfaces, 2014, 1, 1400117.	1.9	37
111	Chemical Vapor Deposition for Solventâ€Free Polymerization at Surfaces. Macromolecular Chemistry and Physics, 2013, 214, 302-312.	1.1	40
112	Tunable Low Bandgap Polyisothianaphthene via Oxidative Chemical Vapor Deposition. Macromolecules, 2013, 46, 6169-6176.	2.2	17
113	Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition. Thin Solid Films, 2013, 539, 181-187.	0.8	59
114	Enhanced Cross-Linked Density by Annealing on Fluorinated Polymers Synthesized via Initiated Chemical Vapor Deposition To Prevent Surface Reconstruction. Macromolecules, 2013, 46, 6548-6554.	2.2	42
115	oCVD poly(3,4-ethylenedioxythiophene) conductivity and lifetime enhancement via acid rinse dopant exchange. Journal of Materials Chemistry A, 2013, 1, 1334-1340.	5. 2	58
116	Organic Vapor Passivation of Silicon at Room Temperature. Advanced Materials, 2013, 25, 2078-2083.	11.1	37
117	Super-Hydrophobic and Oloephobic Crystalline Coatings by Initiated Chemical Vapor Deposition. Physics Procedia, 2013, 46, 56-61.	1.2	21
118	Design of Ordered Wrinkled Patterns with Dynamically Tuned Properties. Physics Procedia, 2013, 46, 40-45.	1.2	4
119	Hybrid supercapacitor materials from poly(3,4-ethylenedioxythiophene) conformally coated aligned carbon nanotubes. Electrochimica Acta, 2013, 112, 522-528.	2.6	36
120	Fabrication of a Microscale Device for Detection of Nitroaromatic Compounds. Journal of Microelectromechanical Systems, 2013, 22, 54-61.	1.7	8
121	Controllable Cross-Linking of Vapor-Deposited Polymer Thin Films and Impact on Material Properties. Macromolecules, 2013, 46, 1832-1840.	2.2	48
122	The application of oxidative chemical vapor deposited (oCVD) PEDOT to textured and non-planar photovoltaic device geometries for enhanced light trapping. Organic Electronics, 2013, 14, 2257-2268.	1.4	29
123	25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modifi cation and Device Fabrication. Advanced Materials, 2013, 25, 5392-5423.	11.1	211
124	Thin Films: Organic Vapor Passivation of Silicon at Room Temperature (Adv. Mater. 14/2013). Advanced Materials, 2013, 25, 2077-2077.	11.1	0
125	Mechanically robust silica-like coatings deposited by microwave plasmas for barrier applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 061502.	0.9	9
126	Global and local planarization of surface roughness by chemical vapor deposition of organosilicon polymer for barrier applications. Journal of Applied Physics, 2012, 111, 073516.	1.1	32

#	Article	IF	Citations
127	Surface Micropatterning: Deterministic Order in Surface Micro-Topologies through Sequential Wrinkling (Adv. Mater. 40/2012). Advanced Materials, 2012, 24, 5440-5440.	11.1	2
128	Cathode buffer layers based on vacuum and solution deposited poly $(3,4-ethylenedioxythiophene)$ for efficient inverted organic solar cells. Applied Physics Letters, 2012, 100, .	1.5	25
129	Systematic control of mesh size in hydrogels by initiated chemical vapor deposition. Soft Matter, 2012, 8, 2890.	1.2	32
130	Low band gap conformal polyselenophene thin films by oxidative chemical vapor deposition. Journal of Materials Chemistry, 2012, 22, 405-410.	6.7	27
131	High aspect ratio, functionalizable conducting copolymer nanobundles. Journal of Materials Chemistry, 2012, 22, 17147.	6.7	9
132	Design of conformal, substrate-independent surface modification for controlled proteinadsorption by chemical vapor deposition (CVD). Soft Matter, 2012, 8, 31-43.	1.2	80
133	Increasing biosensor response through hydrogel thin film deposition: Influence of hydrogel thickness. Vacuum, 2012, 86, 2102-2104.	1.6	18
134	CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Reports on Progress in Physics, 2012, 75, 016501.	8.1	152
135	Combination of iCVD and Porous Silicon for the Development of a Controlled Drug Delivery System. ACS Applied Materials & Development of a Controlled Drug Delivery System.	4.0	75
136	Multijunction organic photovoltaics with a broad spectral response. Physical Chemistry Chemical Physics, 2012, 14, 14548.	1.3	14
137	Deterministic Order in Surface Microâ€Topologies through Sequential Wrinkling. Advanced Materials, 2012, 24, 5441-5446.	11.1	132
138	Initiated Chemical Vapor Depositionâ€Based Method for Patterning Polymer and Metal Microstructures on Curved Substrates. Advanced Materials, 2012, 24, 6445-6450.	11.1	31
139	Vapor phase oxidative synthesis of conjugated polymers and applications. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1329-1351.	2.4	105
140	Ultrathin Antifouling Coatings with Stable Surface Zwitterionic Functionality by Initiated Chemical Vapor Deposition (iCVD). Langmuir, 2012, 28, 12266-12274.	1.6	106
141	Co-polymer clad design for high performance athermal photonic circuits. Optics Express, 2012, 20, 20808.	1.7	13
142	Initiated PECVD of Organosilicon Coatings: A New Strategy to Enhance Monomer Structure Retention. Plasma Processes and Polymers, 2012, 9, 425-434.	1.6	33
143	Non-polydimethylsiloxane devices for oxygen-free flow lithography. Nature Communications, 2012, 3, 805.	5.8	49
144	Organic Solar Cells with Graphene Electrodes and Vapor Printed Poly(3,4-ethylenedioxythiophene) as the Hole Transporting Layers. ACS Nano, 2012, 6, 6370-6377.	7. 3	81

#	Article	IF	Citations
145	Controlling the Degree of Crystallinity and Preferred Crystallographic Orientation in Polyâ€Perfluorodecylacrylate Thin Films by Initiated Chemical Vapor Deposition. Advanced Functional Materials, 2012, 22, 2167-2176.	7.8	58
146	Grafted Crystalline Polyâ€Perfluoroacrylate Structures for Superhydrophobic and Oleophobic Functional Coatings. Advanced Materials, 2012, 24, 4534-4539.	11.1	77
147	The Design and Synthesis of Hard and Impermeable, Yet Flexible, Conformal Organic Coatings. Advanced Materials, 2012, 24, 3692-3696.	11.1	40
148	Polymerâ€Free Nearâ€Infrared Photovoltaics with Single Chirality (6,5) Semiconducting Carbon Nanotube Active Layers. Advanced Materials, 2012, 24, 4436-4439.	11.1	171
149	Topâ€illuminated Organic Photovoltaics on a Variety of Opaque Substrates with Vaporâ€printed Poly(3,4â€ethylenedioxythiophene) Top Electrodes and MoO ₃ Buffer Layer. Advanced Energy Materials, 2012, 2, 1404-1409.	10.2	36
150	Solvent-free surface modification by initiated chemical vapor deposition to render plasma bonding capabilities to surfaces. Microfluidics and Nanofluidics, 2012, 12, 835-839.	1.0	7
151	Bilayer heterojunction polymer solar cells using unsubstituted polythiophene via oxidative chemical vapor deposition. Solar Energy Materials and Solar Cells, 2012, 99, 190-196.	3.0	55
152	A stimuli-responsive coaxial nanofilm for burst release. Soft Matter, 2011, 7, 638-643.	1.2	39
153	Responsive Microgrooves for the Formation of Harvestable Tissue Constructs. Langmuir, 2011, 27, 5671-5679.	1.6	57
154	Surface-Tethered Zwitterionic Ultrathin Antifouling Coatings on Reverse Osmosis Membranes by Initiated Chemical Vapor Deposition. Chemistry of Materials, 2011, 23, 1263-1272.	3.2	244
155	Insights into Thin, Thermally Responsive Polymer Layers Through Quartz Crystal Microbalance with Dissipation. Langmuir, 2011, 27, 10691-10698.	1.6	42
156	Polymeric Nanopore Membranes for Hydrophobicity-Based Separations by Conformal Initiated Chemical Vapor Deposition. Nano Letters, 2011, 11, 677-686.	4.5	138
157	Single-Step Oxidative Chemical Vapor Deposition of â^'COOH Functional Conducting Copolymer and Immobilization of Biomolecule for Sensor Application. Chemistry of Materials, 2011, 23, 2600-2605.	3.2	56
158	Conformal Polymeric Thin Films by Low-Temperature Rapid Initiated Chemical Vapor Deposition (iCVD) Using <i>tert</i> -Butyl Peroxybenzoate as an Initiator. ACS Applied Materials & Diterfaces, 2011, 3, 2410-2416.	4.0	31
159	Novel N-isopropylacrylamide based polymer architecture for faster LCST transition kinetics. Polymer, 2011, 52, 4429-4434.	1.8	40
160	Functional Nanotube Membranes for Hydrophobicity-Based Separations by Initiated Chemical Vapor Deposition (iCVD). ACS Symposium Series, 2011, , 39-50.	0.5	2
161	High Surface Area Flexible Chemiresistive Biosensor by Oxidative Chemical Vapor Deposition. Advanced Functional Materials, 2011, 21, 4328-4337.	7.8	58
162	Biosensors: High Surface Area Flexible Chemiresistive Biosensor by Oxidative Chemical Vapor Deposition (Adv. Funct. Mater. 22/2011). Advanced Functional Materials, 2011, 21, 4327-4327.	7.8	0

#	Article	IF	CITATIONS
163	Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper. Advanced Materials, 2011, 23, 3500-3505.	11.1	243
164	Paper Electronics: Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper (Adv. Mater. 31/2011). Advanced Materials, 2011, 23, 3499-3499.	11.1	36
165	Solventâ€free modification of surfaces with polymers: The case for initiated and oxidative chemical vapor deposition (CVD). AICHE Journal, 2011, 57, 276-285.	1.8	43
166	Ultra-thin, gas permeable free-standing and composite membranes for microfluidic lung assist devices. Biomaterials, 2011, 32, 3883-3889.	5.7	46
167	Initiated chemical vapor deposition of responsive polymeric surfaces. Thin Solid Films, 2011, 519, 4412-4414.	0.8	18
168	Random copolymer films as potential antifouling coatings for reverse osmosis membranes. Desalination and Water Treatment, 2011, 34, 100-105.	1.0	17
169	Microworm optode sensors limit particle diffusion to enable in vivo measurements. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2656-2661.	3.3	50
170	Chemical Vapor Deposition of Conformal, Functional, and Responsive Polymer Films. Advanced Materials, 2010, 22, 1993-2027.	11.1	329
171	Nano Fracture Chemical Sensor for Explosives Detection. , 2010, , .		0
172	Grafting CVD of Poly(vinyl pyrrolidone) for Durable Scleral Lens Coatings. Chemical Vapor Deposition, 2010, 16, 23-28.	1.4	7
173	Tunable Conformality of Polymer Coatings on High Aspect Ratio Features. Chemical Vapor Deposition, 2010, 16, 100-105.	1.4	50
174	Ultralow Dielectric Constant Tetravinyltetramethylcyclotetrasiloxane Films Deposited by Initiated Chemical Vapor Deposition (iCVD). Advanced Functional Materials, 2010, 20, 607-616.	7.8	63
175	Synthesis of Poly(4â€vinylpyridine) Thin Films by Initiated Chemical Vapor Deposition (iCVD) for Selective Nanotrenchâ€Based Sensing of Nitroaromatics. Advanced Functional Materials, 2010, 20, 1144-1151.	7.8	70
176	Selfâ€Aligned Micropatterns of Bifunctional Polymer Surfaces with Independent Chemical and Topographical Contrast. Macromolecular Rapid Communications, 2010, 31, 735-739.	2.0	14
177	Sharp Hydrophilicity Switching and Conformality on Nanostructured Surfaces Prepared via Initiated Chemical Vapor Deposition (iCVD) of a Novel Thermally Responsive Copolymer. Macromolecular Rapid Communications, 2010, 31, 2166-2172.	2.0	47
178	Designing polymer surfaces via vapor deposition. Materials Today, 2010, 13, 26-33.	8.3	123
179	Singleâ€Chamber Deposition of Multilayer Barriers by Plasma Enhanced and Initiated Chemical Vapor Deposition of Organosilicones. Plasma Processes and Polymers, 2010, 7, 561-570.	1.6	50
180	A Chemical Engineering Perspective on "Views on Macroscopic Kinetics of Plasma Polymerisation― Plasma Processes and Polymers, 2010, 7, 380-381.	1.6	21

#	Article	IF	CITATIONS
181	Thermal Stability of Acrylic/Methacrylic Sacrificial Copolymers Fabricated by Initiated Chemical Vapor Deposition. Journal of the Electrochemical Society, 2010, 157, D41.	1.3	15
182	Selective sensing of volatile organic compounds using novel conducting polymer–metal nanoparticle hybrids. Nanotechnology, 2010, 21, 125503.	1.3	57
183	Shape Memory Polymer Thin Films Deposited by Initiated Chemical Vapor Deposition. Macromolecules, 2010, 43, 8344-8347.	2.2	11
184	Conformal, Amine-Functionalized Thin Films by Initiated Chemical Vapor Deposition (iCVD) for Hydrolytically Stable Microfluidic Devices. Chemistry of Materials, 2010, 22, 1732-1738.	3.2	86
185	Conformal, Conducting Poly(3,4-ethylenedioxythiophene) Thin Films Deposited Using Bromine as the Oxidant in a Completely Dry Oxidative Chemical Vapor Deposition Process. Chemistry of Materials, 2010, 22, 2864-2868.	3.2	86
186	Highly swellable free-standing hydrogel nanotube forests. Soft Matter, 2010, 6, 1635.	1.2	55
187	Oxidative chemical vapor deposition (oCVD) of patterned and functional grafted conducting polymer nanostructures. Journal of Materials Chemistry, 2010, 20, 3968.	6.7	37
188	Transition between kinetic and mass transfer regimes in the initiated chemical vapor deposition from ethylene glycol diacrylate. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1135-1143.	0.9	81
189	Functionalized, Swellable Hydrogel Layers as a Platform for Cell Studies. Advanced Functional Materials, 2009, 19, 1276-1286.	7.8	51
190	Random Copolymer Films with Molecularâ€Scale Compositional Heterogeneities that Interfere with Protein Adsorption. Advanced Functional Materials, 2009, 19, 3489-3496.	7.8	115
191	Overview of Strategies for the CVD of Organic Films and Functional Polymer Layers. Chemical Vapor Deposition, 2009, 15, 77-90.	1.4	75
192	Special Issue on CVD and Polymeric Materials. Chemical Vapor Deposition, 2009, 15, 75-76.	1.4	0
193	Crosslinking of copolymer thin films by initiated chemical vapor deposition for hydrogel applications. Thin Solid Films, 2009, 517, 3543-3546.	0.8	10
194	iCVD growth of poly(N-vinylimidazole) and poly(N-vinylimidazole-co-N-vinylpyrrolidone). Thin Solid Films, 2009, 517, 3539-3542.	0.8	12
195	Initiated chemical vapor deposition of polymer films on nonplanar substrates. Thin Solid Films, 2009, 517, 3536-3538.	0.8	16
196	Grafted polymeric nanostructures patterned bottom–up by colloidal lithography and initiated chemical vapor deposition (iCVD). Thin Solid Films, 2009, 517, 3615-3618.	0.8	19
197	Nano-patterning of an iCVD polymer, followed by covalent attachment of QDs. Thin Solid Films, 2009, 517, 3619-3621.	0.8	6
198	Surface modification of high aspect ratio structures with fluoropolymer coatings using chemical vapor deposition. Thin Solid Films, 2009, 517, 3547-3550.	0.8	19

#	Article	IF	Citations
199	A directly patternable click-active polymer film via initiated chemical vapor deposition (iCVD). Thin Solid Films, 2009, 517, 3606-3611.	0.8	17
200	Initiated chemical vapor deposition of a siloxane coating for insulation of neural probes. Thin Solid Films, 2009, 517, 3612-3614.	0.8	13
201	Grafted Functional Polymer Nanostructures Patterned Bottom-Up by Colloidal Lithography and Initiated Chemical Vapor Deposition (iCVD). Chemistry of Materials, 2009, 21, 742-750.	3.2	68
202	Surface-Tethered pH-Responsive Hydrogel Thin Films as Size-Selective Layers on Nanoporous Asymmetric Membranes. Chemistry of Materials, 2009, 21, 4323-4331.	3.2	37
203	Thin Hydrogel Films With Nanoconfined Surface Reactivity by Photoinitiated Chemical Vapor Deposition. Chemistry of Materials, 2009, 21, 399-403.	3.2	47
204	Initiated and oxidative chemical vapor deposition: a scalable method for conformal and functional polymer films on real substrates. Physical Chemistry Chemical Physics, 2009, 11, 5227.	1.3	136
205	A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices. Lab on A Chip, 2009, 9, 411-416.	3.1	88
206	Flexible Cross-Linked Organosilicon Thin Films by Initiated Chemical Vapor Deposition. Macromolecules, 2009, 42, 8138-8145.	2.2	30
207	Integration of Reactive Polymeric Nanofilms Into a Low-Power Electromechanical Switch for Selective Chemical Sensing. Journal of Microelectromechanical Systems, 2009, 18, 97-102.	1.7	20
208	Patterning nano-domains with orthogonal functionalities: Solventless synthesis of self-sorting surfaces. , 2009, , .		0
209	Hierarchical Multifunctional Composites by Conformally Coating Aligned Carbon Nanotube Arrays with Conducting Polymer. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2565-2572.	4.0	47
210	Combinatorial initiated chemical vapor deposition (iCVD) for polymer thin film discovery. Thin Solid Films, 2008, 516, 681-683.	0.8	11
211	A Directly Patternable, Clickâ€Active Polymer Film via Initiated Chemical Vapor Deposition. Macromolecular Rapid Communications, 2008, 29, 1648-1654.	2.0	40
212	Thin Polymer Films with High Step Coverage in Microtrenches by Initiated CVD. Chemical Vapor Deposition, 2008, 14, 313-318.	1.4	107
213	Initiated and Oxidative Chemical Vapor Deposition of Polymeric Thin Films: iCVD and oCVD. Advanced Functional Materials, 2008, 18, 979-992.	7.8	287
214	Novel Strategies for the Deposition of <code>ifcomplexicolomolomolomolomolomolomolomolomolomolo</code>	7.8	52
215	Applying HWCVD to particle coatings and modeling the deposition mechanism. Thin Solid Films, 2008, 516, 674-677.	0.8	7
216	Initiated chemical vapor deposition (iCVD) of copolymer thin films. Thin Solid Films, 2008, 516, 678-680.	0.8	27

#	Article	IF	Citations
217	Initiated chemical vapor deposition of biopassivation coatings. Thin Solid Films, 2008, 516, 684-686.	0.8	14
218	Initiated Chemical Vapor Deposition (iCVD) of Conformal Polymeric Nanocoatings for the Surface Modification of High-Aspect-Ratio Pores. Chemistry of Materials, 2008, 20, 1646-1651.	3.2	101
219	Conformal Coverage of Poly(3,4-ethylenedioxythiophene) Films with Tunable Nanoporosity <i>via</i> Oxidative Chemical Vapor Deposition. ACS Nano, 2008, 2, 1959-1967.	7.3	97
220	Protection of Sensors for Biological Applications by Photoinitiated Chemical Vapor Deposition of Hydrogel Thin Films. Biomacromolecules, 2008, 9, 2857-2862.	2.6	59
221	Vapor Deposition of Hybrid Organic–Inorganic Dielectric Bragg Mirrors having Rapid and Reversibly Tunable Optical Reflectance. Chemistry of Materials, 2008, 20, 2262-2267.	3.2	85
222	Patterning Nanodomains with Orthogonal Functionalities: Solventless Synthesis of Self-Sorting Surfaces. Journal of the American Chemical Society, 2008, 130, 14424-14425.	6.6	87
223	Multi-Scale Grafted Polymeric Nanostructures Patterned Bottom-Up by Colloidal Lithography and Initiated Chemical Vapor Deposition (iCVD). Materials Research Society Symposia Proceedings, 2008, 1134, 1.	0.1	2
224	Characterizations of Boron Carbon Nitride and Boron Carbide Films Synthesized by PECVD. Materials Research Society Symposia Proceedings, 2008, 1108, 1.	0.1	0
225	Cross-Linked Organic Sacrificial Material for Air Gap Formation by Initiated Chemical Vapor Deposition. Journal of the Electrochemical Society, 2008, 155, G78.	1.3	27
226	Doping level and work function control in oxidative chemical vapor deposited poly (3,4-ethylenedioxythiophene). Applied Physics Letters, 2007, 90, 152112.	1.5	67
227	Electrochemical investigation of PEDOT films deposited via CVD for electrochromic applications. Synthetic Metals, 2007, 157, 894-898.	2.1	76
228	Systematic Control of the Electrical Conductivity of Poly(3,4-ethylenedioxythiophene) via Oxidative Chemical Vapor Deposition. Macromolecules, 2007, 40, 6552-6556.	2.2	196
229	Additively Patterned Polymer Thin Films by Photo-Initiated Chemical Vapor Deposition (piCVD). Chemistry of Materials, 2007, 19, 5836-5838.	3.2	13
230	Stable Biopassive Insulation Synthesized by Initiated Chemical Vapor Deposition of Poly(1,3,5-trivinyltrimethylcyclotrisiloxane). Biomacromolecules, 2007, 8, 2564-2570.	2.6	63
231	Solventless Surface Photoinitiated Polymerization:  Grafting Chemical Vapor Deposition (gCVD). Macromolecules, 2007, 40, 4586-4591.	2.2	28
232	Initiated Chemical Vapor Deposition of Alternating Copolymers of Styrene and Maleic Anhydride. Langmuir, 2007, 23, 6624-6630.	1.6	50
233	Decorated Electrospun Fibers Exhibiting Superhydrophobicity. Advanced Materials, 2007, 19, 255-259.	11.1	287
234	Grafted Conducting Polymer Films for Nanoâ€patterning onto Various Organic and Inorganic Substrates by Oxidative Chemical Vapor Deposition. Advanced Materials, 2007, 19, 2863-2867.	11.1	102

#	Article	IF	Citations
235	Initiated Chemical Vapor Deposition of a Surfaceâ€Modifiable Copolymer for Covalent Attachment and Patterning of Nucleophilic Ligands. Macromolecular Rapid Communications, 2007, 28, 1877-1882.	2.0	32
236	Initiated Chemical Vapor Deposition of Poly(furfuryl methacrylate). Macromolecular Rapid Communications, 2007, 28, 2205-2209.	2.0	26
237	All-Dry Synthesis and Coating of Methacrylic Acid Copolymers for Controlled Release. Macromolecular Bioscience, 2007, 7, 429-434.	2.1	73
238	Initiated chemical vapour deposition (iCVD) of thermally stable poly-glycidyl methacrylate. Surface and Coatings Technology, 2007, 201, 9422-9425.	2.2	30
239	Initiated chemical vapor deposition of perfectly alternating poly(styrene-alt-maleic anhydride). Surface and Coatings Technology, 2007, 201, 9417-9421.	2.2	16
240	Particle functionalization and encapsulation by initiated chemical vapor deposition (iCVD). Surface and Coatings Technology, 2007, 201, 9189-9194.	2.2	44
241	Systematic control of the electrical conductivity of poly (3,4-ethylenedioxythiophene) via oxidative chemical vapor deposition (oCVD). Surface and Coatings Technology, 2007, 201, 9406-9412.	2.2	45
242	Initiated chemical vapor deposition (iCVD) of polymeric nanocoatings. Surface and Coatings Technology, 2007, 201, 9400-9405.	2.2	69
243	Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials, 2007, 28, 909-915.	5.7	126
244	Oxidative Chemical Vapor Deposition of Electrically Conducting Poly(3,4-ethylenedioxythiophene) Films. Macromolecules, 2006, 39, 5326-5329.	2.2	211
245	Air-Gap Fabrication Using a Sacrificial Polymeric Thin Film Synthesized via Initiated Chemical Vapor Deposition. Journal of the Electrochemical Society, 2006, 153, C223.	1.3	30
246	Vapor-Deposited Fluorinated Glycidyl Copolymer Thin Films with Low Surface Energy and Improved Mechanical Properties. Macromolecules, 2006, 39, 3895-3900.	2.2	60
247	Positive-Tone Nanopatterning of Chemical Vapor Deposited Polyacrylic Thin Films. Langmuir, 2006, 22, 1795-1799.	1.6	31
248	Initiated Chemical Vapor Deposition of Trivinyltrimethylcyclotrisiloxane for Biomaterial Coatings. Langmuir, 2006, 22, 7021-7026.	1.6	81
249	A Mechanistic Study of Initiated Chemical Vapor Deposition of Polymers:  Analyses of Deposition Rate and Molecular Weight. Macromolecules, 2006, 39, 3890-3894.	2.2	38
250	Structure and Morphology of Poly(isobenzofuran) Films Grown by Hot-Filament Chemical Vapor Deposition. Chemistry of Materials, 2006, 18, 6339-6344.	3.2	6
251	Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):Â An Experimental Study. Macromolecules, 2006, 39, 3688-3694.	2.2	265
252	Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):Â A Kinetic Model. Macromolecules, 2006, 39, 3695-3703.	2.2	161

#	Article	IF	CITATIONS
253	Initiated chemical vapor deposition of polyvinylpyrrolidone-based thin films. Polymer, 2006, 47, 6941-6947.	1.8	76
254	Polymeric nanocoatings by hot-wire chemical vapor deposition (HWCVD). Thin Solid Films, 2006, 501, 211-215.	0.8	40
255	Initiated Chemical Vapor Deposition of Poly(1H,1H,2H,2H-perfluorodecyl Acrylate) Thin Films. Langmuir, 2006, 22, 10047-10052.	1.6	144
256	Large-scale initiated chemical vapor deposition of poly(glycidyl methacrylate) thin films. Thin Solid Films, 2006, 515, 1579-1584.	0.8	82
257	The importance of interfacial design at the carbon nanotube/polymer composite interface. Journal of Applied Polymer Science, 2006, 102, 1413-1418.	1.3	58
258	The CVD of Nanocomposites Fabricated via Ultrasonic Atomization. Chemical Vapor Deposition, 2006, 12, 225-230.	1.4	12
259	Effect of Substrate Temperature on the Plasma Polymerization of Poly(methyl methacrylate). Chemical Vapor Deposition, 2006, 12, 59-66.	1.4	45
260	Positive- and Negative-Tone CVD Polyacrylic Electron-Beam Resists Developable by Supercritical CO2. Chemical Vapor Deposition, 2006, 12, 259-262.	1.4	18
261	Combinatorial Initiated CVD for Polymeric Thin Films. Chemical Vapor Deposition, 2006, 12, 685-691.	1.4	30
262	Particle Surface Design using an All-Dry Encapsulation Method. Advanced Materials, 2006, 18, 1972-1977.	11.1	75
263	Characterization of the phase transitions of ethyl substituted polyhedral oligomeric silsesquioxane. Thermochimica Acta, 2005, 438, 116-125.	1.2	23
264	Initiated CVD of Poly(methyl methacrylate) Thin Films. Chemical Vapor Deposition, 2005, 11, 437-443.	1.4	62
265	Static uniaxial compression of polyisoprene-montmorillonite nanocomposites monitored by 1H spin-lattice relaxation time constants. Journal of Applied Polymer Science, 2005, 98, 1806-1813.	1.3	1
266	Enthalpies of Formation and Reaction for Primary Reactions of Methyl- and Methylmethoxysilanes from Density Functional Theory. Plasma Processes and Polymers, 2005, 2, 669-678.	1.6	14
267	Chemical Vapor Deposition of Organosilicon Thin Films from Methylmethoxysilanes. Plasma Processes and Polymers, 2005, 2, 679-687.	1.6	32
268	Stress relaxation of polyisoprene-laponite nanocomposites monitored by magic angle spinning1H NMR and optical microscopy. Polymer Composites, 2005, 26, 799-805.	2.3	2
269	Chemical Bonding Structure of Low Dielectric Constant Si:O:C:H Films Characterized by Solid-State NMR. Journal of the Electrochemical Society, 2005, 152, F7.	1.3	49

#	Article	IF	CITATIONS
271	Effects of condensation reactions on the structural, mechanical, and electrical properties of plasma-deposited organosilicon thin films from octamethylcyclotetrasiloxane. Journal of Applied Physics, 2005, 97, 113707.	1.1	36
272	Nanoporous Organosilicate Glass Films via Chemical Vapor Deposition onto Colloidal Crystal Templates. Plasma Processes and Polymers, 2005, 2, 401-406.	1.6	13
273	Photoinitiated Chemical Vapor Deposition of Polymeric Thin Films Using a Volatile Photoinitiator. Langmuir, 2005, 21, 11773-11779.	1.6	44
274	Density Functional Theory Calculation of 29Si NMR Chemical Shifts of Organosiloxanes. Journal of Physical Chemistry B, 2005, 109, 13605-13610.	1.2	35
275	Tunable waveguides via photo-oxidation of plasma-polymerized organosilicon films. Applied Optics, 2005, 44, 1691.	2.1	7
276	Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material. Optics Letters, 2005, 30, 2251.	1.7	33
277	Initiated Chemical Vapor Deposition of Linear and Cross-linked Poly(2-hydroxyethyl methacrylate) for Use as Thin-Film Hydrogels. Langmuir, 2005, 21, 8930-8939.	1.6	214
278	Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition. Macromolecules, 2005, 38, 9742-9748.	2.2	690
279	Temperature-resolved Fourier transform infrared study of condensation reactions and porogen decomposition in hybrid organosilicon-porogen films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 61-70.	0.9	38
280	Towards all-dry lithography: Electron-beam patternable poly(glycidyl methacrylate) thin films from hot filament chemical vapor deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 2473.	1.6	33
281	Organosilicon Thin Films Deposited from Cyclic and Acyclic Precursors Using Water as an Oxidant. Journal of the Electrochemical Society, 2004, 151, F105.	1.3	45
282	Investigation of polymer and nanoclay orientation distribution in nylon 6/montmorillonite nanocomposite. Polymer, 2004, 45, 5933-5939.	1.8	77
283	Effect of filament temperature on the chemical vapor deposition of fluorocarbon-organosilicon copolymers. Journal of Applied Polymer Science, 2004, 91, 2176-2185.	1.3	10
284	Peptide Attachment to Vapor Deposited Polymeric Thin Films. Langmuir, 2004, 20, 4774-4776.	1.6	10
285	Hot Filament Chemical Vapor Deposition of Poly(glycidyl methacrylate) Thin Films Usingtert-Butyl Peroxide as an Initiator. Langmuir, 2004, 20, 2484-2488.	1.6	156
286	VAPOR DEPOSITION OF BIOPASSIVATION COATINGS FOR NEUROPROSTHESES. Series on Bioengineering and Biomedical Engineering, 2004, , 580-591.	0.1	3
287	Making thin polymeric materials, including fabrics, microbicidal and also water-repellent. Biotechnology Letters, 2003, 25, 1661-1665.	1.1	59
288	Title is missing!. Plasmas and Polymers, 2003, 8, 31-41.	1.5	24

#	Article	IF	Citations
289	Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. Journal of the Mechanics and Physics of Solids, 2003, 51, 2213-2237.	2.3	215
290	Fluorocarbon dielectrics via hot filament chemical vapor deposition. Journal of Fluorine Chemistry, 2003, 122, 93-96.	0.9	36
291	Insights into Structure and Mechanical Behavior of \hat{l}_{\pm} and \hat{l}_{3} Crystal Forms of Nylon-6 at Low Strain by Infrared Studies. Macromolecules, 2003, 36, 6114-6126.	2.2	41
292	Superhydrophobic Carbon Nanotube Forests. Nano Letters, 2003, 3, 1701-1705.	4.5	1,527
293	Fourier Transform Infrared Investigation of the Deformation Behavior of Montmorillonite in Nylon-6/Nanoclay Nanocomposite. Macromolecules, 2003, 36, 2587-2590.	2.2	89
294	Structure and mechanical properties of thin films deposited from 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane and water. Journal of Applied Physics, 2003, 93, 5143-5150.	1.1	87
295	Plasma-enhanced chemical vapor deposition of low-kdielectric films using methylsilane, dimethylsilane, and trimethylsilane precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 388-393.	0.9	53
296	Optical emission spectroscopy of pulsed hexalfuoropropylene oxide and tetrafluoroethylene plasmas. Journal of Applied Physics, 2002, 91, 9547.	1.1	12
297	Relationship of CF[sub 2] concentration to deposition rates in the pyrolytic chemical vapor deposition process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 690.	1.6	11
298	Ultraviolet absorption measurements of CF2in the parallel plate pyrolytic chemical vapour deposition process. Journal Physics D: Applied Physics, 2002, 35, 480-486.	1.3	14
299	Fluorocarbonâ^Organosilicon Copolymer Synthesis by Hot Filament Chemical Vapor Deposition. Macromolecules, 2002, 35, 1967-1972.	2.2	23
300	Initiation of Cyclic Vinylmethylsiloxane Polymerization in a Hot-Filament Chemical Vapor Deposition Process. Langmuir, 2002, 18, 6424-6428.	1.6	41
301	NMR characterization of electron beam irradiated vinylidene fluoride–trifluoroethylene copolymers. Journal of Fluorine Chemistry, 2002, 113, 27-35.	0.9	53
302	Perfluorooctane Sulfonyl Fluoride as an Initiator in Hot-Filament Chemical Vapor Deposition of Fluorocarbon Thin Films. Langmuir, 2001, 17, 7652-7655.	1.6	66
303	Thermal Annealing of Fluorocarbon Films Grown by Hot Filament Chemical Vapor Deposition. Journal of Physical Chemistry B, 2001, 105, 2303-2307.	1.2	22
304	Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films. Thin Solid Films, 2001, 395, 288-291.	0.8	59
305	Pulsed plasma deposition from 1,1,2,2-tetrafluoroethane by electron cyclotron resonance and conventional plasma enhanced chemical vapor deposition. Journal of Applied Polymer Science, 2001, 80, 2084-2092.	1.3	22
306	The use of for new structure determination in the radiolysis of FEP. Nuclear Instruments & Methods in Physics Research B, 2001, 185, 83-87.	0.6	17

#	Article	IF	CITATIONS
307	Hot Filament Chemical Vapor Deposition of Polyoxymethylene as a Sacrificial Layer for Fabricating Air Gaps. Electrochemical and Solid-State Letters, 2001, 4, G81.	2.2	37
308	Hot-Filament Chemical Vapor Deposition of Organosilicon Thin Films from Hexamethylcyclotrisiloxane and Octamethylcyclotetrasiloxane. Journal of the Electrochemical Society, 2001, 148, F212.	1.3	65
309	Time resolved ultraviolet absorption spectroscopy of pulsed fluorocarbon plasmas. Journal of Applied Physics, 2001, 89, 915-922.	1.1	30
310	Growth and characterization of fluorocarbon thin films grown from trifluoromethane (CHF3) using pulsed-plasma enhanced CVD. Journal of Applied Polymer Science, 2000, 78, 842-849.	1.3	36
311	Pulsed plasma enhanced and hot filament chemical vapor deposition of fluorocarbon films. Journal of Fluorine Chemistry, 2000, 104, 119-126.	0.9	40
312	Thermochemistry of gas phase CF2 reactions: A density functional theory study. Journal of Chemical Physics, 2000, 113, 4103-4108.	1.2	30
313	Variable angle spectroscopic ellipsometry of fluorocarbon films from hot filament chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2404.	0.9	35
314	Fourier Transform Infrared Spectroscopy Study of Thermal Annealing Behavior of ECR Pulsed Plasma Deposited Fluorocarbon Thin Films from 1,1,2,2-Tetrafluoroethane. Journal of the Electrochemical Society, 2000, 147, 678.	1.3	13
315	Chain Mobility in the Amorphous Region of Nylon 6 Observed under Active Uniaxial Deformation. Science, 2000, 288, 116-119.	6.0	130
316	Structure and Morphology of Fluorocarbon Films Grown by Hot Filament Chemical Vapor Deposition. Chemistry of Materials, 2000, 12, 3032-3037.	3.2	103
317	Pulsed-PECVD Films from Hexamethylcyclotrisiloxane for Use as Insulating Biomaterials. Chemistry of Materials, 2000, 12, 3488-3494.	3.2	99
318	Thermal Decomposition of Low Dielectric Constant Pulsed Plasma Fluorocarbon Films: II. Effect of Postdeposition Annealing and Ambients. Journal of the Electrochemical Society, 1999, 146, 4597-4604.	1.3	13
319	Characterization of Chemical Vapor Deposited Amorphous Fluorocarbons for Low Dielectric Constant Interlayer Dielectrics. Journal of the Electrochemical Society, 1999, 146, 2219-2224.	1.3	19
320	Fourier transform infrared spectroscopy of effluents from pulsed plasmas of 1,1,2,2-tetrafluoroethane, hexafluoropropylene oxide, and difluoromethane. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 3419-3428.	0.9	22
321	Solidâ€State Nuclear Magnetic Resonance Spectroscopy of Low Dielectric Constant Films from Pulsed Hydrofluorocarbon Plasmas. Journal of the Electrochemical Society, 1999, 146, 2652-2658.	1.3	9
322	Title is missing!. Plasmas and Polymers, 1999, 4, 21-32.	1.5	79
323	Surface morphology of PECVD fluorocarbon thin films from hexafluoropropylene oxide, 1,1,2,2-tetrafluoroethane, and difluoromethane. Journal of Applied Polymer Science, 1999, 74, 2439-2447.	1.3	35
324	Pulsed plasma-enhanced chemical vapor deposition from CH2F2, C2H2F4, and CHClF2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 445-452.	0.9	54

#	Article	IF	CITATIONS
325	Deuterium Nuclear Magnetic Resonance of Phenol-d5in Nylon 6 under Active Uniaxial Deformation. Macromolecules, 1999, 32, 4359-4364.	2.2	25
326	Thermal Decomposition of Low Dielectric Constant Pulsed Plasma Fluorocarbon Films: I. Effect of Precursors and Substrate Temperature. Journal of the Electrochemical Society, 1999, 146, 4590-4596.	1.3	35
327	Pulsed plasma-enhanced chemical vapor deposition from hexafluoropropylene oxide: Film composition study. Journal of Applied Polymer Science, 1998, 67, 1489-1502.	1.3	64
328	Correlation Times of Motion of Deuterium Oxide in Polyamide 6 Rods. Macromolecules, 1998, 31, 8907-8911.	2.2	16
329	High-Resolution 19F MAS NMR Spectroscopy of Fluorocarbon Films from Pulsed PECVD of Hexafluoropropylene Oxide. Journal of Physical Chemistry B, 1998, 102, 5977-5984.	1.2	31
330	Pulsed Plasma Enhanced Chemical Vapor Deposition from CH ₂ F ₂ , C ₂ H ₂ F ₄ , and CHCIF ₂ . Materials Research Society Symposia Proceedings, 1998, 511, 75.	0.1	18
331	Electron spin resonance of pulsed plasma-enhanced chemical vapor deposited fluorocarbon films. Journal of Applied Physics, 1997, 82, 1784-1787.	1.1	46
332	Flexible fluorocarbon wire coatings by pulsed plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1814-1818.	0.9	119
333	Structural Correlation Study of Pulsed Plasma-Polymerized Fluorocarbon Solids by Two-Dimensional Wide-Line Separation NMR Spectroscopy. Journal of Physical Chemistry B, 1997, 101, 6839-6846.	1.2	26
334	Pyrolytic CVD of poly(organosiloxane) thin films. Chemical Vapor Deposition, 1997, 3, 299-301.	1.4	18
335	Method for achieving high selectivity and resolution in selectively deposited diamond films. Diamond and Related Materials, 1996, 5, 1048-1050.	1.8	1
336	Preliminary Electrical Characterization of Pulsed-Plasma Enhanced Chemical Vapor Deposited Teflon-like Thin Films. Materials Research Society Symposia Proceedings, 1996, 443, 189.	0.1	5
337	Hydrogen in Cvd Diamond Films. Chemical Vapor Deposition, 1996, 2, 37-43.	1.4	25
338	Analytical Solutions for Multiple-Quantum-Coherence Dynamics among Two or Three Dipolar-Coupled, Spin-12 Nuclei. Journal of Magnetic Resonance Series A, 1996, 120, 139-147.	1.6	25
339	Growth of fluorocarbon polymer thin films with high CF2 fractions and low dangling bond concentrations by thermal chemical vapor deposition. Applied Physics Letters, 1996, 68, 2810-2812.	1.5	127
340	Mass Transport Effects In Selectively Deposited Diamond Thin Films. Materials Research Society Symposia Proceedings, 1995, 416, 25.	0.1	0
341	Applications of solid-state multiple quantum NMR. TrAC - Trends in Analytical Chemistry, 1995, 14, 104-112.	5.8	5
342	Poly(dimethylsiloxane)/Nylon-6 Block Copolymers: Molecular Mobility at the Interface. Macromolecules, 1995, 28, 4899-4903.	2.2	19

#	Article	IF	CITATIONS
343	The role of proton nuclear magnetic resonance spinâ€lattice relaxation centers in the strong absorption transition at 210 nm in fused silica. Journal of Applied Physics, 1994, 76, 3063-3067.	1.1	3
344	Application of proton multiple-quantum NMR to the study of dynamics in bulk chloral polycarbonate. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2235-2240.	2.4	2
345	Radial distribution of hydrogen in chemical vapor deposited diamond. Chemistry of Materials, 1994, 6, 39-43.	3.2	13
346	Effects of polymeric motion on fluorine-19 NMR multiple quantum coherences: signal refocusing in poly(tetrafluoroethylene). Macromolecules, 1993, 26, 4652-4657.	2.2	11
347	Distribution and motion of trifluoromethanesulfonate anions in poly(p-hydroxystyrene) and polystyrene films studied by multiple-quantum NMR. Macromolecules, 1993, 26, 3750-3757.	2.2	17
348	1H NMR studies on the effects of annealing on chemical-vapor-deposited (CVD) diamond. Diamond and Related Materials, 1993, 2, 126-129.	1.8	13
349	Analysis of fluorocarbon plasma-treated diamond powders by solid-state fluorine-19 nuclear magnetic resonance. The Journal of Physical Chemistry, 1993, 97, 9187-9195.	2.9	21
350	Using Zeolites as Substrates for Diamond Thin Film Deposition. Materials Research Society Symposia Proceedings, 1993, 317, 523.	0.1	0
351	Dynamics of Crystalline and Amorphous Polytetrafluoroethylene Studied by Multiple Quantum NMR. Materials Research Society Symposia Proceedings, 1993, 321, 155.	0.1	0
352	Quantitative correlation of infrared absorption with nuclear magnetic resonance measurements of hydrogen content in diamond films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 3143-3148.	0.9	58
353	Evaluation of diamond films by nuclear magnetic resonance and Raman spectroscopy. Diamond and Related Materials, 1992, 1, 1145-1155.	1.8	43
354	Photosensitive salt distribution in polymer films studied by fluorine-19 multiple-quantum NMR. Macromolecules, 1992, 25, 1864-1869.	2.2	20
355	Multiple-quantum NMR coherence growth in polycrystalline salts containing 19F. Journal of Magnetic Resonance, 1992, 99, 149-160.	0.5	6
356	Computer-simulation of the multiple-quantum dynamics of one-, two- and three-dimensional spin distributions. Chemical Physics, 1992, 166, 367-378.	0.9	22
357	Hydrogen microstructure in amorphous hydrogenated silicon. Physical Review B, 1987, 36, 3259-3267.	1.1	137
358	Structure and properties of amorphous hydrogenated silicon carbide. Physical Review B, 1987, 36, 9722-9731.	1.1	102
359	Multiple-Quantum NMR Study of Clustering in Hydrogenated Amorphous Silicon. Physical Review Letters, 1986, 56, 1377-1380.	2.9	209
360	Estimation of critical properties with group contribution methods. AICHE Journal, 1984, 30, 137-142.	1.8	192