
Alessandro Angelini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Analysis of Human Serum Albumin in Complex with the Fibrate Drug Gemfibrozil. International Journal of Molecular Sciences, 2022, 23, 1769.	4.1	7
2	Guidelines, Strategies, and Principles for the Directed Evolution of Cross-Reactive Antibodies Using Yeast Surface Display Technology. Methods in Molecular Biology, 2022, 2491, 251-262.	0.9	1
3	Molecular analysis and therapeutic applications of human serum albumin-fatty acid interactions. Journal of Controlled Release, 2022, 348, 115-126.	9.9	15
4	Bicyclic peptide-based assay for uPA cancer biomarker. Biosensors and Bioelectronics, 2022, 213, 114477.	10.1	6
5	Synthesis and direct assay of large macrocycle diversities by combinatorial late-stage modification at picomole scale. Nature Communications, 2022, 13, .	12.8	14
6	Actinomyces and MRONJ: A retrospective study and a literature review. Journal of Stomatology, Oral and Maxillofacial Surgery, 2021, 122, 499-504.	1.3	17
7	Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds. Analyst, The, 2021, 146, 2065-2073.	3.5	6
8	Unveiling the binding mode of perfluorooctanoic acid to human serum albumin. Protein Science, 2021, 30, 830-841.	7.6	25
9	Peptide-Based Inhibitors of ADAM and ADAMTS Metalloproteinases. Frontiers in Molecular Biosciences, 2021, 8, 703715.	3.5	15
10	(INVITED)Nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance. Results in Optics, 2021, 5, 100123.	2.0	33
11	Restricted Clonality and Limited Germinal Center Reentry Characterize Memory B Cell Reactivation by Boosting. Cell, 2020, 180, 92-106.e11.	28.9	220
12	Macrocycle synthesis strategy based on step-wise "adding and reacting―three components enables screening of large combinatorial libraries. Chemical Science, 2020, 11, 7858-7863.	7.4	12
13	Covalent immobilization of delipidated human serum albumin on poly(pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid. Bioelectrochemistry, 2020, 134, 107540.	4.6	16
14	Molecular evolution of peptides by yeast surface display technology. MedChemComm, 2019, 10, 1569-1580.	3.4	32
15	Thiol-to-amine cyclization reaction enables screening of large libraries of macrocyclic compounds and the generation of sub-kilodalton ligands. Science Advances, 2019, 5, eaaw2851.	10.3	30
16	Non-covalent albumin-binding ligands for extending the circulating half-life of small biotherapeutics. MedChemComm, 2019, 10, 1068-1081.	3.4	101
17	Directed evolution of broadly crossreactive chemokine-blocking antibodies efficacious in arthritis. Nature Communications, 2018, 9, 1461.	12.8	25
18	Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. Journal of Experimental Medicine, 2017, 214, 1679-1690.	8.5	41

#	Article	IF	CITATIONS
19	Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor. Science, 2015, 347, 1113-1117.	12.6	261
20	Synergistic Innate and Adaptive Immune Response to Combination Immunotherapy with Anti-Tumor Antigen Antibodies and Extended Serum Half-Life IL-2. Cancer Cell, 2015, 27, 489-501.	16.8	158
21	Protein Engineering and Selection Using Yeast Surface Display. Methods in Molecular Biology, 2015, 1319, 3-36.	0.9	83
22	Bicyclic Peptides Conjugated to an Albumin-Binding Tag Diffuse Efficiently into Solid Tumors. Molecular Cancer Therapeutics, 2015, 14, 151-161.	4.1	25
23	Triggering Positive Selection of Germinal Center B Cells by Antigen Targeting to DEC-205. Methods in Molecular Biology, 2015, 1291, 125-134.	0.9	25
24	Peptide Ligands Stabilized by Small Molecules. Angewandte Chemie - International Edition, 2014, 53, 1602-1606.	13.8	103
25	Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines. Integrative Biology (United Kingdom), 2013, 5, 1272.	1.3	20
26	Phage display libraries of differently sized bicyclic peptides. MedChemComm, 2013, 4, 145-150.	3.4	42
27	Bicyclization and Tethering to Albumin Yields Long-Acting Peptide Antagonists. Journal of Medicinal Chemistry, 2012, 55, 10187-10197.	6.4	47
28	Chemical Macrocyclization of Peptides Fused to Antibody Fc Fragments. Bioconjugate Chemistry, 2012, 23, 1856-1863.	3.6	27
29	Bicyclic Peptide Inhibitor Reveals Large Contact Interface with a Protease Target. ACS Chemical Biology, 2012, 7, 817-821.	3.4	156
30	Structurally Diverse Cyclisation Linkers Impose Different Backbone Conformations in Bicyclic Peptides. ChemBioChem, 2012, 13, 1032-1038.	2.6	81
31	Boosting the Sensitivity of Ligand–Protein Screening by NMR of Long-Lived States. Journal of the American Chemical Society, 2012, 134, 11076-11079.	13.7	75
32	Measuring net protease activities in biological samples using selective peptidic inhibitors. Analytical Biochemistry, 2012, 427, 18-20.	2.4	5
33	Enzymatic Cyclisation of Peptides with a Transglutaminase. ChemBioChem, 2011, 12, 38-42.	2.6	29
34	Post-translational modification of genetically encoded polypeptide libraries. Current Opinion in Chemical Biology, 2011, 15, 355-361.	6.1	28
35	Expression of <i>Helicobacter pylori</i> CagA domains by libraryâ€based construct screening. FEBS Journal, 2009, 276, 816-824.	4.7	33
36	Structural and mutational analysis of TenA protein (HP1287) from the <i>Helicobacter pylori</i> thiamin salvage pathway – evidence of a different substrate specificity. FEBS Journal, 2009, 276, 6227-6235.	4.7	12

#	Article	IF	CITATIONS
37	The Helicobacter pylori CagD (HP0545, Cag24) Protein Is Essential for CagA Translocation and Maximal Induction of Interleukin-8 Secretion. Journal of Molecular Biology, 2009, 386, 204-217.	4.2	33
38	Structural and enzymatic characterization of HP0496, a YbgC thioesterase from <i>Helicobacter pylori</i> . Proteins: Structure, Function and Bioinformatics, 2008, 72, 1212-1221.	2.6	30
39	The crystal structure of CagS from the <i>Helicobacter pylori</i> pathogenicity island. Proteins: Structure, Function and Bioinformatics, 2007, 69, 440-443.	2.6	10
40	Structural biology of Helicobacter pylori type IV secretion system. Microbial Cell Factories, 2006, 5, P45.	4.0	1
41	Structural proteomics of proteins coded by thecagPAI ofHelicobacter pylori. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c258-c258.	0.3	Ο
42	Crystal Structure of CagZ, a Protein from the Helicobacter pylori Pathogenicity Island that Encodes for a Type IV Secretion System. Journal of Molecular Biology, 2004, 340, 881-889.	4.2	21