Amitav Sanyal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9575004/publications.pdf

Version: 2024-02-01

81900 138484 4,422 128 39 58 citations g-index h-index papers 132 132 132 4824 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stimuli-responsive polymer-coated iron oxide nanoparticles as drug delivery platforms. , 2022, , 133-169.		1
2	Photothermal Activatable Mucoadhesive Fiber Mats for On-Demand Delivery of Insulin via Buccal and Corneal Mucosa. ACS Applied Bio Materials, 2022, 5, 771-778.	4.6	14
3	Benzothiazole-disulfide based redox-responsive polymers: facile access to reversibly functionalizable polymeric coatings. Polymer Chemistry, 2022, 13, 2595-2607.	3.9	7
4	Hydrophilic Cross-Linked Polymeric Nanofibers Using Electrospinning: Imparting Aqueous Stability to Enable Biomedical Applications. ACS Applied Polymer Materials, 2022, 4, 1-17.	4.4	8
5	Redox-Responsive Hydrogels for Tunable and "On-Demand―Release of Biomacromolecules. Bioconjugate Chemistry, 2022, 33, 839-847.	3.6	24
6	Catch and release strategy of matrix metalloprotease aptamers ⟨i⟩via⟨ i⟩ thiol–disulfide exchange reaction on a graphene based electrochemical sensor. Sensors & Diagnostics, 2022, 1, 739-749.	3.8	4
7	Functional polymeric coatings: thiol-maleimide â€̃click' chemistry as a powerful surface functionalization tool. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 443-455.	2.2	8
8	Fast-Forming Dissolvable Redox-Responsive Hydrogels: Exploiting the Orthogonality of Thiol–Maleimide and Thiol–Disulfide Exchange Chemistry. Biomacromolecules, 2022, 23, 3525-3534.	5.4	20
9	Editorial – A message from the editorial team. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 1-1.	2.2	1
10	Succinimidyl Carbonate-Based Amine-Reactive Polymer Brushes: Facile Fabrication of Functional Interfaces. ACS Applied Polymer Materials, 2021, 3, 2507-2517.	4.4	13
11	Furan-containing polymeric Materials: Harnessing the Diels-Alder chemistry for biomedical applications. European Polymer Journal, 2021, 153, 110514.	5.4	39
12	Biodegradable Poly(lactic acid) Stabilized Nanoemulsions for the Treatment of Multidrug-Resistant Bacterial Biofilms. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40325-40331.	8.0	21
13	Tailoring Aqueous Dispersibility and Biofunctionalization of Carbon Nanotubes Using Maleimide-Containing Clickable Polymers. ACS Applied Polymer Materials, 2021, 3, 5707-5716.	4.4	2
14	Cyclodextrin embedded covalently crosslinked networks: synthesis and applications of hydrogels with nano-containers. Polymer Chemistry, 2020, 11, 615-629.	3.9	37
15	Thiol-Reactive Clickable Cryogels: Importance of Macroporosity and Linkers on Biomolecular Immobilization. Bioconjugate Chemistry, 2020, 31, 2116-2124.	3.6	9
16	Micropatterned Reactive Nanofibers: Facile Fabrication of a Versatile Biofunctionalizable Interface. ACS Applied Polymer Materials, 2020, 2, 4026-4036.	4.4	16
17	"Clickable―bacterial poly(γ-glutamic acid). Polymer Chemistry, 2020, 11, 5582-5589.	3.9	31
18	A modular and orthogonally reactive platform for fabrication of polymer–drug conjugates for targeted delivery. Polymer Chemistry, 2020, 11, 7137-7146.	3.9	9

#	Article	IF	Citations
19	An â€~on-demand' photothermal antibiotic release cryogel patch: evaluation of efficacy on an <i>ex vivo</i> model for skin wound infection. Biomaterials Science, 2020, 8, 5911-5919.	5.4	27
20	Photothermally Active Cryogel Devices for Effective Release of Antimicrobial Peptides: On-Demand Treatment of Infections. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56805-56814.	8.0	22
21	Self-Healing Hydrogels Based on Reversible Covalent Linkages: A Survey of Dynamic Chemical Bonds in Network Formation. Advances in Polymer Science, 2020, , 243-294.	0.8	13
22	Multifunctional and Transformable â€ [*] Clickableâ€ [™] Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment. Polymers, 2020, 12, 1211.	4.5	11
23	Expanding the versatility of poly(dimethylsiloxane) through polymeric modification: an effective approach for improving triboelectric energy harvesting performance. Smart Materials and Structures, 2020, 29, 035024.	3.5	12
24	Trastuzumab targeted micellar delivery of docetaxel using dendron–polymer conjugates. Biomaterials Science, 2020, 8, 2600-2610.	5.4	23
25	Thiol-reactive thiosulfonate group containing copolymers: facile entry to disulfide-mediated polymer conjugation and redox-responsive functionalizable networks. Polymer Chemistry, 2020, 11, 1763-1773.	3.9	11
26	Fabrication of Patterned Hydrogel Interfaces: Exploiting the Maleimide Group as a Dual Purpose Handle for Cross-Linking and Bioconjugation. Bioconjugate Chemistry, 2020, 31, 1382-1391.	3.6	22
27	Pyridyl disulfide-based thiol–disulfide exchange reaction: shaping the design of redox-responsive polymeric materials. Polymer Chemistry, 2020, 11, 7603-7624.	3.9	51
28	Magnetic glyconanoparticles for selective lectin separation and purification. Polymer Chemistry, 2019, 10, 3351-3361.	3.9	25
29	Thiol-Reactive Polymers for Titanium Interfaces: Fabrication of Antimicrobial Coatings. ACS Applied Polymer Materials, 2019, 1, 1308-1316.	4.4	24
30	Dendron–Polymer Conjugate Based Cross-Linked Micelles: A Robust and Versatile Nanosystem for Targeted Delivery. Bioconjugate Chemistry, 2019, 30, 1087-1097.	3.6	18
31	Orthogonally "Clickable―Biodegradable Nanofibers: Tailoring Biomaterials for Specific Protein Immobilization. ACS Omega, 2019, 4, 121-129.	3.5	9
32	Facile Fabrication of a Modular "Catch and Release―Hydrogel Interface: Harnessing Thiol–Disulfide Exchange for Reversible Protein Capture and Cell Attachment. ACS Applied Materials & Interfaces, 2018, 10, 14399-14409.	8.0	43
33	The Taming of the Maleimide: Fabrication of Maleimideâ€Containing â€~Clickable' Polymeric Materials. Chemical Record, 2018, 18, 570-586.	5.8	33
34	Multi-Functional Nanogels as Theranostic Platforms: Exploiting Reversible and Nonreversible Linkages for Targeting, Imaging, and Drug Delivery. Bioconjugate Chemistry, 2018, 29, 1885-1896.	3.6	46
35	Biodegradable Nanocomposite Antimicrobials for the Eradication of Multidrug-Resistant Bacterial Biofilms without Accumulated Resistance. Journal of the American Chemical Society, 2018, 140, 6176-6182.	13.7	92
36	Surfactant-Free Direct Access to Porphyrin-Cross-Linked Nanogels for Photodynamic and Photothermal Therapy. Bioconjugate Chemistry, 2018, 29, 4149-4159.	3.6	19

#	Article	IF	CITATIONS
37	Reduced Graphene-Oxide-Embedded Polymeric Nanofiber Mats: An "On-Demand―Photothermally Triggered Antibiotic Release Platform. ACS Applied Materials & Interfaces, 2018, 10, 41098-41106.	8.0	7 5
38	Humidity induced inhibition and enhancement of spontaneous emission of dye molecules in a single PEG nanofiber. Optical Materials Express, 2018, 8, 568.	3.0	12
39	Drug Delivery Systems from Self-Assembly of Dendron-Polymer Conjugates â€. Molecules, 2018, 23, 1570.	3.8	53
40	Reversible Light-Switching of Enzymatic Activity on Orthogonally Functionalized Polymer Brushes. ACS Applied Materials & Distribution (2017), 9, 9245-9249.	8.0	28
41	Interplay between Molecular Packing, Drug Loading, and Core Cross-Linking in Bottlebrush Copolymer Micelles. Macromolecules, 2017, 50, 1342-1352.	4.8	72
42	Hooked on Cryogels: A Carbamate Linker Based Depot for Slow Drug Release. Bioconjugate Chemistry, 2017, 28, 1443-1451.	3.6	44
43	Diels-Alder "Clickable―Polymer Brushes: A Versatile Catalyst-Free Conjugation Platform. ACS Macro Letters, 2017, 6, 415-420.	4.8	46
44	Multiarm star polymers with a thermally cleavable core: A "graftingâ€from―approach paves the way. Journal of Polymer Science Part A, 2017, 55, 885-893.	2.3	5
45	"Clickable―Nanogels via Thermally Driven Self-Assembly of Polymers: Facile Access to Targeted Imaging Platforms using Thiol–Maleimide Conjugation. Biomacromolecules, 2017, 18, 490-497.	5.4	43
46	Embedding Well-Defined Responsive Hydrogels with Nanocontainers: Tunable Materials from Telechelic Polymers and Cyclodextrins. ACS Omega, 2017, 2, 6658-6667.	3.5	26
47	Diels–Alder "Clickable―Biodegradable Nanofibers: Benign Tailoring of Scaffolds for Biomolecular Immobilization and Cell Growth. Bioconjugate Chemistry, 2017, 28, 2420-2428.	3.6	22
48	Functionalization of Reduced Graphene Oxide via Thiol–Maleimide "Click―Chemistry: Facile Fabrication of Targeted Drug Delivery Vehicles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34194-34203.	8.0	63
49	Influence of Size and Shape on the Biodistribution of Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Biomacromolecules, 2017, 18, 3963-3970.	5.4	87
50	Orthogonal thiol–ene â€~click' reactions: a powerful combination for fabrication and functionalization of patterned hydrogels. Chemical Communications, 2017, 53, 8894-8897.	4.1	41
51	Surface-Anchored Thiol-Reactive Soft Interfaces: Engineering Effective Platforms for Biomolecular Immobilization and Sensing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27946-27954.	8.0	21
52	Magnetic reduced graphene oxide loaded hydrogels: Highly versatile and efficient adsorbents for dyes and selective Cr(VI) ions removal. Journal of Colloid and Interface Science, 2017, 507, 360-369.	9.4	72
53	Size-dependent properties of matter: Is the size of a pill important?. Science Activities, 2017, 54, 86-95.	0.6	4
54	Designing Dendron–Polymer Conjugate Based Targeted Drug Delivery Platforms with a "Mix-and-Match―Modularity. Bioconjugate Chemistry, 2017, 28, 2962-2975.	3.6	19

#	Article	IF	Citations
55	Dendrons and Multiarm Polymers with Thiol-Exchangeable Cores: A Reversible Conjugation Platform for Delivery. Biomacromolecules, 2017, 18, 2463-2477.	5.4	15
56	Photothermally triggered on-demand insulin release from reduced graphene oxide modified hydrogels. Journal of Controlled Release, 2017, 246, 164-173.	9.9	70
57	Maleimide Containing Thiol-Reactive Polymers: Synthesis and Functionalization. , 2017, , 265-293.		1
58	Dendrimers and Dendrons as Versatile Building Blocks for the Fabrication of Functional Hydrogels. Molecules, 2016, 21, 497.	3.8	32
59	Synthesis and functionalization of dendronâ€polymer conjugate based hydrogels via sequential thiolâ€ene "click―reactions. Journal of Polymer Science Part A, 2016, 54, 926-934.	2.3	16
60	Multireactive Poly(2-oxazoline) Nanofibers through Electrospinning with Crosslinking on the Fly. ACS Macro Letters, 2016, 5, 676-681.	4.8	41
61	Best of both worlds: Diels–Alder chemistry towards fabrication of redox-responsive degradable hydrogels for protein release. RSC Advances, 2016, 6, 74757-74764.	3.6	41
62	Modular Fabrication of Polymer Brush Coated Magnetic Nanoparticles: Engineering the Interface for Targeted Cellular Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19813-19826.	8.0	38
63	Design and Synthesis of Water-Soluble Multifunctionalizable Thiol-Reactive Polymeric Supports for Cellular Targeting. Bioconjugate Chemistry, 2015, 26, 1550-1560.	3.6	27
64	Fabrication of Thiol–Ene "Clickable―Copolymer-Brush Nanostructures on Polymeric Substrates via Extreme Ultraviolet Interference Lithography. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11337-11345.	8.0	25
65	Humidity sensing mechanism based on the distance dependent interactions between BODIPY dye molecules and gold thin films. Sensors and Actuators A: Physical, 2015, 227, 21-30.	4.1	2
66	Reactive and â€~clickable' electrospun polymeric nanofibers. Polymer Chemistry, 2015, 6, 3372-3381.	3.9	34
67	"Clickable―Polymeric Nanofibers through Hydrophilic–Hydrophobic Balance: Fabrication of Robust Biomolecular Immobilization Platforms. Biomacromolecules, 2015, 16, 1590-1597.	5.4	33
68	Fabrication of poly(ethylene glycol)-based cyclodextrin containing hydrogels via thiol-ene click reaction. European Polymer Journal, 2015, 62, 426-434.	5.4	50
69	Tunable Elastic Modulus of Nanoparticle Monolayer Films by Host–Guest Chemistry. Advanced Materials, 2014, 26, 5056-5061.	21.0	22
70	Cyclodextrin mediated polymer coupling via thiolâ \in "maleimide conjugation: facile access to functionalizable hydrogels. RSC Advances, 2014, 4, 57834-57841.	3.6	37
71	Fabrication of a planar water gated organic field effect transistor using a hydrophilic polythiophene for improved digital inverter performance. Organic Electronics, 2014, 15, 646-653.	2.6	23
72	Maleimide-Functionalized Thiol Reactive Copolymer Brushes: Fabrication and Post-Polymerization Modification. Macromolecules, 2014, 47, 7842-7851.	4.8	48

#	Article	IF	Citations
73	â€~Clickable' hydrogels for all: facile fabrication and functionalization. Biomaterials Science, 2014, 2, 67-75.	5.4	57
74	Bioinspired Anchorable Thiol-Reactive Polymers: Synthesis and Applications Toward Surface Functionalization of Magnetic Nanoparticles. Macromolecules, 2014, 47, 5124-5134.	4.8	49
75	Indispensable Platforms for Bioimmobilization: Maleimide-Based Thiol Reactive Hydrogels. Bioconjugate Chemistry, 2014, 25, 2004-2011.	3.6	42
76	Clickable Poly(ethylene glycol)â€Based Copolymers Using Azide–Alkyne Click Cycloadditionâ€Mediated Stepâ€Growth Polymerization. Macromolecular Chemistry and Physics, 2014, 215, 2237-2247.	2.2	32
77	Dendron–polymer conjugates via the diels–alder "click―reaction of novel anthraceneâ€based dendrons. Journal of Polymer Science Part A, 2013, 51, 3191-3201.	2.3	14
78	Dendronized polystyrene via orthogonal doubleâ€elick reactions. Journal of Polymer Science Part A, 2013, 51, 5029-5037.	2.3	21
79	Sequence-controlled polymerization using dendritic macromonomers: precise chain-positioning of bulky functional clusters. Chemical Communications, 2013, 49, 7280.	4.1	18
80	Designing functionalizable hydrogels through thiol–epoxy coupling chemistry. Chemical Communications, 2013, 49, 11191.	4.1	79
81	Design and Synthesis of Maleimide Group Containing Polymeric Materials via the Diels-Alder/Retro Diels-Alder Strategy. , 2013, , 119-151.		4
82	pH degradable dendron-functionalized poly(2-ethyl-2-oxazoline) prepared by a cascade "double-click― reaction. Polymer Chemistry, 2013, 4, 3236.	3.9	28
83	Fabrication of Stable Nanoparticle-Based Colloidal Microcapsules. Current Organic Chemistry, 2013, 17, 49-57.	1.6	5
84	Wavelength and coherence effects on the growth mechanism of silicon nanopillars and their use in the modification of spontaneous lifetime emission of BODIPY dye molecules. Applied Physics A: Materials Science and Processing, 2012, 108, 801-807.	2.3	2
85	Synthesis and Functionalization of Thiol-Reactive Biodegradable Polymers. Macromolecules, 2012, 45, 1715-1722.	4.8	98
86	Double click reaction strategies for polymer conjugation and post-functionalization of polymers. Polymer Chemistry, 2012, 3, 825-835.	3.9	180
87	Design and Synthesis of Novel "Orthogonally―Functionalizable Maleimideâ€Based Styrenic Copolymers. Macromolecular Rapid Communications, 2012, 33, 856-862.	3.9	43
88	The Effect of the Strength and Direction of Magnetic Field on the Assembly of Magnetic Nanoparticles Into Higher Structures. Journal of Nanoscience and Nanotechnology, 2012, 12, 2761-2766.	0.9	1
89	Functionalization of Reactive Polymeric Coatings via Diels–Alder Reaction Using Microcontact Printing. Macromolecular Chemistry and Physics, 2012, 213, 166-172.	2.2	42
90	Metal-Free Functionalization of Linear Polyurethanes by Thiol-Maleimide Coupling Reactions. Macromolecules, 2011, 44, 7874-7878.	4.8	57

#	Article	IF	Citations
91	Orthogonally "Clickable―Biodegradable Dendrons. Macromolecules, 2011, 44, 2707-2714.	4.8	34
92	Origins of the diastereoselectivity in hydrogen bonding directed Diels–Alder reactions of chiral dienes with achiral dienophiles: a computational study. Organic and Biomolecular Chemistry, 2011, 9, 8079.	2.8	18
93	Fabrication and Functionalization of Hydrogels through "Click―Chemistry. Chemistry - an Asian Journal, 2011, 6, 2648-2659.	3.3	119
94	Discrete macromolecular constructs via the Diels–Alder "Click―reaction. Journal of Polymer Science Part A, 2011, 49, 4103-4120.	2.3	126
95	Direct Fabrication of Functional and Biofunctional Nanostructures Through Reactive Imprinting. Advanced Materials, 2011, 23, 3165-3169.	21.0	48
96	Colloidal Microcapsules: Selfâ€Assembly of Nanoparticles at the Liquid–Liquid Interface. Chemistry - an Asian Journal, 2010, 5, 2442-2453.	3.3	58
97	Diels–Alder Cycloaddition ycloreversion: A Powerful Combo in Materials Design. Macromolecular Chemistry and Physics, 2010, 211, 1417-1425.	2.2	196
98	Molecular Recognition Induced Selfâ€Assembly of Diblock Copolymers: Microspheres to Vesicles. Macromolecular Bioscience, 2010, 10, 481-487.	4.1	13
99	Dendronized polymers via Diels–Alder "click―reaction. Journal of Polymer Science Part A, 2010, 48, 410-416.	2.3	35
100	Maleimideâ€based thiol reactive multiarm star polymers via Dielsâ€Alder/retro Dielsâ€Alder strategy. Journal of Polymer Science Part A, 2010, 48, 2546-2556.	2.3	35
101	Multiarm star polymers with peripheral dendritic PMMA arms through Diels–Alder click reaction. Journal of Polymer Science Part A, 2010, 48, 4842-4846.	2.3	21
102	FRET between BODIPY Azide Dye Clusters within PEG-Based Hydrogel: A Handle to Measure Stimuli Responsiveness. Journal of Physical Chemistry B, 2010, 114, 10954-10960.	2.6	25
103	Fabrication of Maleimide Containing Thiol Reactive Hydrogels via Dielsâ^'Alder/Retro-Dielsâ^'Alder Strategy. Macromolecules, 2010, 43, 4140-4148.	4.8	61
104	Assembly of magnetic nanoparticles into higher structures on patterned magnetic beads under the influence of magnetic field. Nanotechnology, 2010, 21, 125603.	2.6	17
105	Dendron-anchored organocatalysts: the asymmetric reduction of imines with trichlorosilane, catalysed by an amino acid-derived formamide appended to a dendron. Organic and Biomolecular Chemistry, 2010, 8, 137-141.	2.8	29
106	Recognition mediated encapsulation and isolation of flavin–polymer conjugates using dendritic guest moieties. Chemical Communications, 2010, 46, 2067.	4.1	16
107	Stable Magnetic Colloidosomes via Clickâ€Mediated Crosslinking of Nanoparticles at Water–Oil Interfaces. Small, 2009, 5, 685-688.	10.0	66
108	Understanding the Stereoselection Induced by Chiral Anthracene Templates in Dielsâ^'Alder Cycloaddition: A DFT Study. Journal of Organic Chemistry, 2009, 74, 2328-2336.	3.2	11

#	Article	IF	CITATIONS
109	Formation and Size Tuning of Colloidal Microcapsules via Hostâ 'Guest Molecular Recognition at the Liquidâ 'Liquid Interface. Langmuir, 2009, 25, 13852-13854.	3.5	42
110	Dendron-based model systems for flavoenzyme activity: towards a new class of synthetic flavoenzyme. Chemical Communications, 2008, , 4123.	4.1	12
111	Segment Block Dendrimers via Dielsâ-'Alder Cycloaddition. Organic Letters, 2008, 10, 2353-2356.	4.6	70
112	$\langle i \rangle$ In situ $\langle i \rangle$ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films. Journal of Applied Physics, 2007, 102, .	2.5	19
113	A Dielsâ€Alder/retro Dielsâ€Alder strategy to synthesize polymers bearing maleimide side chains. Journal of Polymer Science Part A, 2007, 45, 4545-4551.	2.3	101
114	Recognition-Mediated Assembly of Nanoparticle-Diblock Copolymer Micelles with Controlled Size. Chemistry of Materials, 2006, 18, 5404-5409.	6.7	18
115	Chiral anthracene and anthrone templates as stereocontrolling elements in Diels–Alder/retro Diels–Alder sequences. Bioorganic and Medicinal Chemistry, 2005, 13, 5299-5309.	3.0	31
116	A new, chiral aminoanthracene for the Diels–Alder/retro-Diels–Alder sequence in lactam and butenolide synthesis. Tetrahedron Letters, 2005, 46, 2475-2478.	1.4	35
117	A New Chiral Anthracene for the Asymmetric Dielsâ^'Alder/Retro-Dielsâ^'Alder Sequence. Organic Letters, 2005, 7, 31-34.	4.6	57
118	Molecular Recognition in Structured Matrixes:Â Control of Guest Localization in Block Copolymer Films. Journal of the American Chemical Society, 2005, 127, 16318-16324.	13.7	34
119	Adsorption/Desorption of Mono- and Diblock Copolymers on Surfaces Using Specific Hydrogen Bonding Interactions. Langmuir, 2004, 20, 5958-5964.	3.5	31
120	Anthracene-Functionalized Polystyrene Random Copolymers:Â Effects of Side-Chain Modification on Polymer Structure and Behavior. Macromolecules, 2004, 37, 92-98.	4.8	12
121	Integration of Recognition Elements with Macromolecular Scaffolds:Â Effects on Polymer Self-Assembly in the Solid State. Macromolecules, 2004, 37, 4931-4939.	4.8	16
122	Recognition-Induced Transformation of Microspheres into Vesicles:Â Morphology and Size Control. Journal of the American Chemical Society, 2004, 126, 14773-14777.	13.7	97
123	Cycloadditions of chiral anthracenes: effect of the trifluoromethyl group. Tetrahedron Letters, 2003, 44, 931-935.	1.4	37
124	Stereoselective Dielsâ°'Alder Reactions of Chiral Anthracenes. Organic Letters, 2000, 2, 2527-2530.	4.6	44
125	O-nitromandelic acid: A chiral solvating agent for the NMR determination of chiral diamine enantiomeric purity. Chirality, 1997, 9, 556-562.	2.6	9
126	Biodegradable Polymers: Synthesis and Functionalization. , 0, , 776-803.		0

#	Article	IF	CITATIONS
12'	7 Thiol-based Conjugation: Polymeric Material Modification. , 0, , 7847-7883.		О
12	3 Cyclodextrin-Containing Hydrogel Networks. , 0, , 2243-2258.		4