
Masanori Kasahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9574292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature Reviews Genetics, 2010, 11, 47-59.	16.3	753
2	Elephant shark genome provides unique insights into gnathostome evolution. Nature, 2014, 505, 174-179.	27.8	689
3	The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Research, 2008, 18, 1100-1111.	5.5	456
4	Comparative Genomics of the MHC. Immunity, 2001, 15, 351-362.	14.3	335
5	The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-4gMY-inducible proteasome activator PA28. Immunological Reviews, 1998, 163, 161-176.	6.0	294
6	Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: "waiting for Godot― Immunogenetics, 2003, 55, 570-581.	2.4	278
7	The 2R hypothesis: an update. Current Opinion in Immunology, 2007, 19, 547-552.	5.5	243
8	The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nature Immunology, 2018, 19, 923-931.	14.5	233
9	VLR-Based Adaptive Immunity. Annual Review of Immunology, 2012, 30, 203-220.	21.8	217
10	Variable lymphocyte receptors in hagfish. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9224-9229.	7.1	200
11	Abnormal conformation and impaired degradation of propylthiouracilâ€induced neutrophil extracellular traps: Implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody–associated vasculitis. Arthritis and Rheumatism, 2012, 64, 3779-3787.	6.7	181
12	A Novel Type of E3 Ligase for the Ufm1 Conjugation System. Journal of Biological Chemistry, 2010, 285, 5417-5427.	3.4	176
13	Decreased Proteasomal Activity Causes Age-Related Phenotypes and Promotes the Development of Metabolic Abnormalities. American Journal of Pathology, 2012, 180, 963-972.	3.8	158
14	On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends in Immunology, 2004, 25, 105-111.	6.8	125
15	Cooperation of Multiple Chaperones Required for the Assembly ofÂMammalian 20S Proteasomes. Molecular Cell, 2006, 24, 977-984.	9.7	124
16	The chromosomal duplication model of the major histocompatibility complex. Immunological Reviews, 1999, 167, 17-32.	6.0	107
17	Structural Diversity of the Hagfish Variable Lymphocyte Receptors. Journal of Biological Chemistry, 2007, 282, 6726-6732.	3.4	104
18	Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nature Structural and Molecular Biology, 2008, 15, 228-236.	8.2	101

MASANORI KASAHARA

#	Article	IF	CITATIONS
19	Identification of a third variable lymphocyte receptor in the lamprey. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14304-14308.	7.1	100
20	Evidence That Human Epididymal Protein ARP Plays a Role in Gamete Fusion Through Complementary Sites on the Surface of the Human Egg1. Biology of Reproduction, 2001, 65, 1000-1005.	2.7	91
21	Evidence for the Involvement of Testicular Protein CRISP2 in Mouse Sperm-Egg Fusion1. Biology of Reproduction, 2007, 76, 701-708.	2.7	86
22	Phylogenetic and expression analysis of lamprey toll-like receptors. Developmental and Comparative Immunology, 2010, 34, 855-865.	2.3	84
23	Two Novel NKG2D Ligands of the Mouse H60 Family with Differential Expression Patterns and Binding Affinities to NKG2D. Journal of Immunology, 2008, 180, 1678-1685.	0.8	83
24	The mouse male germ cell-specific gene Tpx-1: molecular structure, mode of expression in spermatogenesis, and sequence similarity to two non-mammalian genes. Mammalian Genome, 1992, 3, 274-280.	2.2	74
25	Transcriptome analysis of hagfish leukocytes: a framework for understanding the immune system of jawless fishes. Developmental and Comparative Immunology, 2004, 28, 993-1003.	2.3	69
26	The evolutionary origin of the major histocompatibility complex: Polymorphism of class II α chain genes in the cartilaginous fish. European Journal of Immunology, 1993, 23, 2160-2165.	2.9	65
27	Exclusive expression of proteasome subunit β5t in the human thymic cortex. Blood, 2009, 113, 5186-5191.	1.4	63
28	Identification of the mouse killer immunoglobulin-like receptor-like (Kirl) gene family mapping to Chromosome X. Immunogenetics, 2003, 54, 782-790.	2.4	57
29	Natural killer cell receptors in the horse: evidence for the existence of multiple transcribedLY49genes. European Journal of Immunology, 2004, 34, 773-784.	2.9	57
30	CD4+/CD8+ macrophages infiltrating at inflammatory sites: a population of monocytes/macrophages with a cytotoxic phenotype. Blood, 2006, 107, 2004-2012.	1.4	53
31	New Insights into the Genomic Organization and Origin of the Major Histocompatibility Complex: Role of Chromosomal (genome) Duplication in the Emergence of the Adaptive Immune System. Hereditas, 2004, 127, 59-65.	1.4	51
32	Identification of the rat IgA Fc receptor encoded in the leukocyte receptor complex. Immunogenetics, 2004, 55, 712-716.	2.4	49
33	Evolution of the Class II Major Histocompatibility Complex Alleles in Higher Primates. Immunological Reviews, 1990, 113, 65-82.	6.0	47
34	Hagfish Leukocytes Express a Paired Receptor Family with a Variable Domain Resembling Those of Antigen Receptors. Journal of Immunology, 2005, 174, 2885-2891.	0.8	43
35	Involvement of an NKG2D Ligand H60c in Epidermal Dendritic T Cell-Mediated Wound Repair. Journal of Immunology, 2012, 188, 3972-3979.	0.8	43
36	Corticomedullary differentiation and maturational arrest in thymomas. Histopathology, 2014, 64, 557-566.	2.9	43

#	Article	IF	CITATIONS
37	A family of MHC class I-like genes located in the vicinity of the mouse leukocyte receptor complex. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13687-13692.	7.1	41
38	Two Forms of Adaptive Immunity in Vertebrates. Advances in Immunology, 2014, 122, 59-90.	2.2	40
39	The leukocyte common antigen (CD45) of the Pacific hagfish, Eptatretus stoutii: implications for the primordial function of CD45. Immunogenetics, 2002, 54, 286-291.	2.4	37
40	NKG2D Triggers Cytotoxicity in Murine Epidermal Î ³ δT Cells via PI3K-Dependent, Syk/ZAP70-Independent Signaling Pathway. Journal of Investigative Dermatology, 2014, 134, 396-404.	0.7	36
41	Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics, 2005, 57, 590-600.	2.4	35
42	A Degenerate ParaHox Gene Cluster in a Degenerate Vertebrate. Molecular Biology and Evolution, 2007, 24, 2681-2686.	8.9	34
43	Variable domains in hagfish: NICIR is a polymorphic multigene family expressed preferentially in leukocytes and is related to lamprey TCR-like. Immunogenetics, 2006, 58, 216-225.	2.4	33
44	Immunogenetics of the NKG2D ligand gene family. Immunogenetics, 2012, 64, 855-867.	2.4	33
45	Expression of Proteasome Subunit β5t in Thymic Epithelial Tumors. American Journal of Surgical Pathology, 2011, 35, 1296-1304.	3.7	32
46	Two variable lymphocyte receptor genes of the inshore hagfish are located far apart on the same chromosome. Immunogenetics, 2007, 59, 329-331.	2.4	31
47	Origin and Evolution of Dendritic Epidermal T Cells. Frontiers in Immunology, 2018, 9, 1059.	4.8	30
48	Xenopus class II A genes: studies of genetics, polymorphism, and expression. Developmental and Comparative Immunology, 2002, 26, 735-750.	2.3	28
49	Agnathan VIP, PACAP and Their Receptors: Ancestral Origins of Today's Highly Diversified Forms. PLoS ONE, 2012, 7, e44691.	2.5	28
50	Comparative genomic analysis of the proteasome β5t subunit gene: implications for the origin and evolution of thymoproteasomes. Immunogenetics, 2012, 64, 49-58.	2.4	26
51	Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice. Laboratory Investigation, 2015, 95, 625-634.	3.7	26
52	Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis. Experimental and Molecular Pathology, 2015, 98, 41-46.	2.1	26
53	Tollâ€like receptor 3 signal augments radiationâ€induced tumor growth retardation in a murine model. Cancer Science, 2018, 109, 956-965.	3.9	26
54	Protective Roles of Epithelial Cells in the Survival of Adult T-Cell Leukemia/Lymphoma Cells. American Journal of Pathology, 2013, 182, 1832-1842.	3.8	24

MASANORI KASAHARA

#	Article	IF	CITATIONS
55	Inferring the "Primordial Immune Complexâ€ŧ Origins of MHC Class I and Antigen Receptors Revealed by Comparative Genomics. Journal of Immunology, 2019, 203, 1882-1896.	0.8	24
56	Origin and evolution of the specialized forms of proteasomes involved in antigen presentation. Immunogenetics, 2019, 71, 251-261.	2.4	23
57	Rat CD4+CD8+Macrophages Kill Tumor Cells through an NKG2D- and Granzyme/Perforin-Dependent Mechanism. Journal of Immunology, 2008, 180, 2999-3006.	0.8	22
58	Anchorage-dependent multicellular aggregate formation induces CD44 high cancer stem cell-like ATL cells in an NF-1ºB- and vimentin-dependent manner. Cancer Letters, 2015, 357, 355-363.	7.2	22
59	Restricted Expression of the Thymoproteasome Is Required for Thymic Selection and Peripheral Homeostasis of CD8+ T Cells. Cell Reports, 2019, 26, 639-651.e2.	6.4	21
60	The Anti-Oxidant Ergothioneine Augments the Immunomodulatory Function of TLR Agonists by Direct Action on Macrophages. PLoS ONE, 2017, 12, e0169360.	2.5	21
61	Role of Neuronal Interferon-Î ³ in the Development of Myelopathy in Rats Infected with Human T-Cell Leukemia Virus Type 1. American Journal of Pathology, 2006, 169, 189-199.	3.8	20
62	Comparative genomic analysis of mammalian NKG2D ligand family genes provides insights into their origin and evolution. Immunogenetics, 2010, 62, 441-450.	2.4	20
63	Comparative genomics of theMill family: a rapidly evolving MHC class I gene family. European Journal of Immunology, 2004, 34, 1597-1607.	2.9	19
64	Overexpression of TNF-α-converting enzyme in fibroblasts augments dermal fibrosis after inflammation. Laboratory Investigation, 2013, 93, 72-80.	3.7	18
65	Decreased Proteasomal Activity Causes Photoreceptor Degeneration in Mice. , 2014, 55, 4682.		18
66	MICA/B expression in macrophage foam cells infiltrating atherosclerotic plaques. Experimental and Molecular Pathology, 2014, 97, 171-175.	2.1	18
67	Expression of cathepsins V and S in thymic epithelial tumors. Human Pathology, 2017, 60, 66-74.	2.0	18
68	Crystal Structure of the Lamprey Variable Lymphocyte Receptor C Reveals an Unusual Feature in Its N-Terminal Capping Module. PLoS ONE, 2014, 9, e85875.	2.5	18
69	MHC Class I-Like MILL Molecules Are β2-Microglobulin-Associated, GPI-Anchored Glycoproteins That Do Not Require TAP for Cell Surface Expression. Journal of Immunology, 2006, 177, 3108-3115.	0.8	15
70	Plasmaâ€dependent, antibody―and Fcγ receptorâ€mediated translocation of CD8 molecules from T cells to monocytes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 46-56.	1.5	15
71	Comparative genomics of the <scp>NKG</scp> 2D ligand gene family. Immunological Reviews, 2015, 267, 72-87.	6.0	15
72	Nucleotide sequence analysis of the â^1⁄435-kb segment containing interferon-γ-inducible mouse proteasome activator genes. Immunogenetics, 2001, 53, 119-129.	2.4	13

Masanori Kasahara

#	Article	IF	CITATIONS
73	Anti-oxidative Amino Acid L-ergothioneine Modulates the Tumor Microenvironment to Facilitate Adjuvant Vaccine Immunotherapy. Frontiers in Immunology, 2019, 10, 671.	4.8	13
74	Two Types of Antigen Receptor Systems in Vertebrates. Zoological Science, 2008, 25, 969-975.	0.7	12
75	Expression of thymoproteasome subunit β5t in type AB thymoma. Journal of Clinical Pathology, 2014, 67, 276-278.	2.0	12
76	The SKINT1-Like Gene Is Inactivated in Hominoids But Not in All Primate Species: Implications for the Origin of Dendritic Epidermal T Cells. PLoS ONE, 2015, 10, e0123258.	2.5	12
77	Decreased Proteasomal Function Induces Neuronal Loss and Memory Impairment. American Journal of Pathology, 2021, 191, 144-156.	3.8	12
78	Genome Duplication and T Cell Immunity. Progress in Molecular Biology and Translational Science, 2010, 92, 7-36.	1.7	11
79	Venkatesh et al. reply. Nature, 2014, 511, E9-E10.	27.8	10
80	The immune system of jawless vertebrates: insights into the prototype of the adaptive immune system. Immunogenetics, 2021, 73, 5-16.	2.4	10
81	Human Endogenous Retrovirus-R Env Glycoprotein as Possible Autoantigen in Autoimmune Disease. AIDS Research and Human Retroviruses, 2009, 25, 889-896.	1.1	9
82	Thymoproteasome: Role in Thymic Selection and Clinical Significance as a Diagnostic Marker for Thymic Epithelial Tumors. Archivum Immunologiae Et Therapiae Experimentalis, 2013, 61, 357-365.	2.3	9
83	Impact of whole-genome duplication on vertebrate development and evolution. Seminars in Cell and Developmental Biology, 2013, 24, 81-82.	5.0	9
84	Immunohistochemical Validation and Expression Profiling of NKG2D Ligands in a Wide Spectrum of Human Epithelial Neoplasms. Journal of Histochemistry and Cytochemistry, 2015, 63, 217-227.	2.5	9
85	Establishment of a vascular endothelial cell-reactive type II NKT cell clone from a rat model of autoimmune vasculitis. International Immunology, 2015, 27, 105-114.	4.0	9
86	Mechanism of FcÎ ³ Receptor-Mediated Trogocytosis-Based False-Positive Results in Flow Cytometry. PLoS ONE, 2012, 7, e52918.	2.5	8
87	Construction of a bacterial artificial chromosome library from the inshore hagfish, Eptatretus burgeri: A resource for the analysis of the agnathan genome. Genes and Genetic Systems, 2004, 79, 251-253.	0.7	7
88	Proteasome subunit β5t expression in cervical ectopic thymoma. Journal of Clinical Pathology, 2012, 65, 858-859.	2.0	7
89	Visualising the dynamics of live pancreatic microtumours self-organised through cell-in-cell invasion. Scientific Reports, 2018, 8, 14054.	3.3	7
90	Role of immunoproteasomes and thymoproteasomes in health and disease. Pathology International, 2021, 71, 371-382.	1.3	7

#	Article	IF	CITATIONS
91	Copy number and sequence variation of leucine-rich repeat modules suggests distinct functional constraints operating on variable lymphocyte receptors expressed by agnathan T cell-like and B cell-like lymphocytes. Immunogenetics, 2014, 66, 403-409.	2.4	6
92	Expression of cathepsins B, D and K in thymic epithelial tumours. Journal of Clinical Pathology, 2021, 74, 84-90.	2.0	6
93	Expression of the immunoproteasome subunit β5i in non-small cell lung carcinomas. Journal of Clinical Pathology, 2021, 74, 300-306.	2.0	6
94	Variable Lymphocyte Receptors: A Current Overview. Results and Problems in Cell Differentiation, 2015, 57, 175-192.	0.7	6
95	A human PSMB11 variant affects thymoproteasome processing and CD8+ T cell production. JCI Insight, 2017, 2, .	5.0	6
96	<i>Déjà vu</i> : the identity of a third lineage of lymphocytes in lampreys. Immunology and Cell Biology, 2013, 91, 599-600.	2.3	5
97	Decreased expression of thymusâ€specific proteasome subunit β5t in Down syndrome patients. Histopathology, 2015, 67, 235-244.	2.9	5
98	Lymphocyte Populations in Jawless Vertebrates: Insights Into the Origin and Evolution of Adaptive Immunity. , 2016, , 51-67.		4
99	Double-stranded RNA analog and type I interferon regulate expression of Trem paired receptors in murine myeloid cells. BMC Immunology, 2016, 17, 9.	2.2	4
100	Structure of MHC class I-like MILL2 reveals heparan-sulfate binding and interdomain flexibility. Nature Communications, 2018, 9, 4330.	12.8	3
101	Biology, evolution, and history of antigen processing and presentation: Immunogenetics special issue 2019. Immunogenetics, 2019, 71, 137-139.	2.4	3
102	Anchorage-dependent multicellular aggregate formation induces a quiescent stem-like intractable phenotype in pancreatic cancer cells. Oncotarget, 2018, 9, 29845-29856.	1.8	3
103	Enhanced production of p24 Gag protein in HIV-1-infected rat cells fused with uninfected human cells. Experimental and Molecular Pathology, 2007, 83, 125-130.	2.1	2
104	The TLR3/TICAM-1 signal constitutively controls spontaneous polyposis through suppression of c-Myc in Apc Min/+ mice. Journal of Biomedical Science, 2017, 24, 79.	7.0	2
105	The Immune System of Agnathans (Jawless Vertebrates). , 2016, , 468-473.		2
106	Decrease of Peripheral and Intestinal NKG2A-Positive T Cells in Patients with Ulcerative Colitis. PLoS ONE, 2012, 7, e44113.	2.5	2
107	Questions Arising from "The Origin and Role of MHC Class I-Associated Self-Peptides― Progress in Molecular Biology and Translational Science, 2010, 92, 61.	1.7	0