Wencai Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9573917/publications.pdf

Version: 2024-02-01

191	39,297	75 h-index	187
papers	citations		g-index
193	193	193	39593 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Electrochemically derived nanographene oxide activates endothelial tip cells and promotes angiogenesis by binding endogenous lysophosphatidic acid. Bioactive Materials, 2022, 9, 92-104.	8.6	9
2	A silicon-graphene-silicon transistor with an improved current gain. Journal of Materials Science and Technology, 2022, 104, 127-130.	5.6	7
3	Nonlinear electrohydrodynamic ion transport in graphene nanopores. Science Advances, 2022, 8, eabj2510.	4.7	21
4	Electrochemical Deposition of a Singleâ€Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angewandte Chemie, 2022, 134, .	1.6	3
5	Electrochemical Deposition of a Singleâ€Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
6	Fabrication of Largeâ€Area Uniform Nanometerâ€Thick Functional Layers and Their Stacks for Flexible Quantum Dot Lightâ€Emitting Diodes. Small Methods, 2022, 6, e2101030.	4.6	3
7	Ultrafast growth of submillimeter-scale single-crystal MoSe2 by pre-alloying CVD. Nanoscale Horizons, 2022, , .	4.1	2
8	Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots. ACS Nano, 2022, 16, 9041-9048.	7.3	7
9	Advances in Flexible Optoelectronics Based on Chemical Vapor Depositionâ€Grown Graphene. Advanced Functional Materials, 2022, 32, .	7.8	19
10	Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene. Carbon, 2021, 171, 350-358.	5.4	33
11	Six-membered-ring inorganic materials: definition and prospects. National Science Review, 2021, 8, nwaa248.	4.6	14
12	A graphene–Mo ₂ C heterostructure for a highly responsive broadband photodetector. Physical Chemistry Chemical Physics, 2021, 23, 23024-23031.	1.3	1
13	High-performance flexible resistive random access memory devices based on graphene oxidized with a perpendicular oxidation gradient. Nanoscale, 2021, 13, 2448-2455.	2.8	12
14	Superconductivity and High-Pressure Performance of 2D Mo ₂ C Crystals. Journal of Physical Chemistry Letters, 2021, 12, 2219-2225.	2.1	3
15	Kilometers Long Graphene-Coated Optical Fibers for Fast Thermal Sensing. Research, 2021, 2021, 5612850.	2.8	8
16	A Durable and Efficient Electrocatalyst for Saline Water Splitting with Current Density Exceeding 2000ÂmAÂcm ^{â^2} . Advanced Functional Materials, 2021, 31, 2010367.	7.8	102
17	Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nature Communications, 2021, 12, 2361.	5.8	199
18	Fabrication of high-conductivity RGO film at a temperature lower than 1500 ºC by electrical current. Journal of Materials Science: Materials in Electronics, 2021, 32, 11727-11736.	1.1	1

#	Article	IF	CITATIONS
19	Unlocking the dissolution mechanism of phosphorus anode for lithium-ion batteries. Energy Storage Materials, 2021, 37, 417-423.	9.5	36
20	Breaking the Rateâ€Integrity Dilemma in Largeâ€Area Bubbling Transfer of Graphene by Strain Engineering. Advanced Functional Materials, 2021, 31, 2104228.	7.8	7
21	Intrinsic piezoelectric ferromagnetism with large out-of-plane piezoelectric response in Janus monolayer CrBr1.5I1.5. Journal of Applied Physics, 2021, 129, .	1.1	17
22	An ultrasensitive molybdenum-based double-heterojunction phototransistor. Nature Communications, 2021, 12, 4094.	5.8	37
23	Magnetic Doping Induced Superconductivity-to-Incommensurate Density Waves Transition in a 2D Ultrathin Cr-Doped Mo ₂ C Crystal. ACS Nano, 2021, 15, 14938-14946.	7.3	7
24	2D materials: a transition in leadershipâ€"reflecting on our successes and looking forward to the future. 2D Materials, 2021, 8, 040401.	2.0	0
25	Coexistence of intrinsic piezoelectricity, ferromagnetism, and nontrivial band topology in Li-decorated Janus monolayer Fe2SSe with a high Curie temperature. Journal Physics D: Applied Physics, 2021, 54, 505006.	1.3	8
26	Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy and Environmental Science, 2021, 14, 4610-4619.	15.6	118
27	Predicted septuple-atomic-layer Janus MSiGeN $<$ sub $>$ 4 $<$ /sub $>$ (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. Journal of Materials Chemistry C, 2021, 9, 2464-2473.	2.7	86
28	Surface passivation induced a significant enhancement of superconductivity in layered two-dimensional MSi $<$ sub $>$ 2 $<$ /sub $>$ N $<$ sub $>$ 4 $<$ /sub $>$ (M = Ta and Nb) materials. Nanoscale, 2021, 13, 18947-18954.	2.8	18
29	A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nature Communications, 2021, 12, 6051.	5.8	112
30	Aerosol Jet Printing of Graphene and Carbon Nanotube Patterns on Realistically Rugged Substrates. ACS Omega, 2021, 6, 34301-34313.	1.6	11
31	Transfer-free CVD graphene for highly sensitive glucose sensors. Journal of Materials Science and Technology, 2020, 37, 71-76.	5.6	28
32	Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25991-25998.	3.3	28
33	Chemical vapor deposition of layered two-dimensional MoSi ₂ N ₄ materials. Science, 2020, 369, 670-674.	6.0	556
34	Superhigh Uniform Magnetic Cr Substitution in a 2D Mo 2 C Superconductor for a Macroscopicâ€Scale Kondo Effect. Advanced Materials, 2020, 32, 2002825.	11.1	7
35	CdPS ₃ nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science, 2020, 370, 596-600.	6.0	120
36	Distinct superconducting properties and hydrostatic pressure effects in 2D \hat{l}_{\pm} - and \hat{l}^{2} -Mo2C crystal sheets. NPG Asia Materials, 2020, 12, .	3.8	10

#	Article	lF	Citations
37	Proton and Li-Ion Permeation through Graphene with Eight-Atom-Ring Defects. ACS Nano, 2020, 14, 7280-7286.	7.3	55
38	Transport through a network of two-dimensional NbC superconducting crystals connected via weak links. Physical Review B, 2020, 101 , .	1.1	2
39	Defect and interlayer coupling tuned quasiparticle scattering in 2D disordered Mo2C superconducting microcrystals. Journal Physics D: Applied Physics, 2020, 53, 434002.	1.3	1
40	Second Time-Scale Synthesis of High-Quality Graphite Films by Quenching for Effective Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 3121-3128.	7.3	57
41	Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film. Advanced Materials, 2020, 32, e1907411.	11.1	310
42	Highâ€Valence Nickel Singleâ€Atom Catalysts Coordinated to Oxygen Sites for Extraordinarily Activating Oxygen Evolution Reaction. Advanced Science, 2020, 7, 1903089.	5.6	182
43	Heterostructured Ni–Mo–N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction. Carbon, 2020, 165, 122-128.	5.4	37
44	Intrinsic piezoelectricity in monolayer MSi ₂ N ₄ (MÂ=ÂMo, W, Cr, Ti, Zr and Hf). Europhysics Letters, 2020, 132, 57002.	0.7	69
45	Control of the ultrafast photo-electronic dynamics of a chemical-vapor-deposited-grown graphene by ozone oxidation. Photonics Research, 2020, 8, 17.	3.4	3
46	A Graphene Base Transistor for Potential Terahertz Application. , 2020, , .		0
47	High Yield Controlled Synthesis of Nano-Graphene Oxide by Water Electrolytic Oxidation of Glassy Carbon for Metal-Free Catalysis. ACS Nano, 2019, 13, 9482-9490.	7.3	25
48	Graphene Thermal Emitter with Enhanced Joule Heating and Localized Light Emission in Air. ACS Photonics, 2019, 6, 2117-2125.	3.2	53
49	Palladium nanoparticles supported on graphene acid: a stable and eco-friendly bifunctional C–C homo- and cross-coupling catalyst. Green Chemistry, 2019, 21, 5238-5247.	4.6	33
50	Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening. Nature Communications, 2019, 10, 4854.	5.8	43
51	A vertical silicon-graphene-germanium transistor. Nature Communications, 2019, 10, 4873.	5.8	37
52	High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nature Communications, 2019, 10, 4663.	5.8	213
53	Tunable In Situ Stress and Spontaneous Microwrinkling of Multiscale Heterostructures. Journal of Physical Chemistry C, 2019, 123, 26041-26046.	1.5	3
54	Bottom-Up Synthesis of 2D Transition Metal Carbides and Nitrides. , 2019, , 89-109.		13

#	Article	IF	CITATIONS
55	Layer-dependent dielectric and optical properties of centimeter-scale 2D WSe ₂ : evolution from a single layer to few layers. Nanoscale, 2019, 11, 22762-22771.	2.8	55
56	Production of carbon dots during the liquid phase exfoliation of MoS2 quantum dots. Carbon, 2019, 155, 243-249.	5.4	11
57	Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. Energy and Environmental Science, 2019, 12, 1534-1541.	15.6	192
58	AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. Advanced Functional Materials, 2019, 29, 1900314.	7.8	121
59	Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt. Nature Communications, 2019, 10, 2809.	5.8	43
60	Defective graphene as a high-efficiency Raman enhancement substrate. Journal of Materials Science and Technology, 2019, 35, 1996-2002.	5.6	13
61	A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano, 2019, 13, 5513-5522.	7.3	29
62	Transfer Methods of Graphene from Metal Substrates: A Review. Small Methods, 2019, 3, 1900049.	4.6	67
63	2D hierarchical yolk-shell heterostructures as advanced host-interlayer integrated electrode for enhanced Li-S batteries. Journal of Energy Chemistry, 2019, 36, 64-73.	7.1	39
64	Layer-Stacking, Defects, and Robust Superconductivity on the Mo-Terminated Surface of Ultrathin Mo ₂ C Flakes Grown by CVD. Nano Letters, 2019, 19, 3327-3335.	4.5	21
65	Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu. ACS Applied Materials & Diterfaces, 2019, 11, 17629-17636.	4.0	10
66	Flexible 64 \tilde{A} — 64 Pixel AMOLED Displays Driven by Uniform Carbon Nanotube Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11699-11705.	4.0	33
67	Grapheneâ€Based Transparent Conducting Electrodes for High Efficiency Flexible Organic Photovoltaics: Elucidating the Source of the Power Losses. Solar Rrl, 2019, 3, 1900042.	3.1	13
68	Water-assisted rapid growth of monolayer graphene films on SiO2/Si substrates. Carbon, 2019, 148, 241-248.	5.4	35
69	Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy, 2019, 60, 394-403.	8.2	119
70	Synergistic Effect of Aligned Graphene Nanosheets in Graphene Foam for Highâ€Performance Thermally Conductive Composites. Advanced Materials, 2019, 31, e1900199.	11.1	173
71	Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State and Materials Science, 2019, 23, 149-163.	5.6	353
72	Effects of domain structures on vortex state of two-dimensional superconducting Mo ₂ C crystals. 2D Materials, 2019, 6, 021005.	2.0	8

#	Article	IF	Citations
73	Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. Nano Energy, 2019, 60, 743-751.	8.2	151
74	Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe ₂ . ACS Photonics, 2019, 6, 787-792.	3.2	43
75	Graphene and other two-dimensional materials. Frontiers of Physics, 2019, 14, 1.	2.4	72
76	Transport Properties of Topological Semimetal Tungsten Carbide in the 2D Limit. Advanced Electronic Materials, 2019, 5, 1800839.	2.6	5
77	Grain Boundaries and Tilt-Angle-Dependent Transport Properties of a 2D Mo ₂ C Superconductor. Nano Letters, 2019, 19, 857-865.	4.5	18
78	Ultrathin \hat{l}_{\pm} -Mo2C dominated by (100) Surface/Cu Schottky junction as efficient catalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 853-859.	3.8	19
79	Graphene and Mo ₂ C vertical heterostructure for femtosecond mode-locked lasers [Invited]. Optical Materials Express, 2019, 9, 3268.	1.6	8
80	Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications, 2018, 9, 1486.	5.8	428
81	Ultrathin 2D Transition Metal Carbides for Ultrafast Pulsed Fiber Lasers. ACS Photonics, 2018, 5, 1808-1816.	3.2	148
82	A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries. Energy Storage Materials, 2018, 13, 66-71.	9.5	84
83	Green synthesis of graphene oxide byÂseconds timescale water electrolytic oxidation. Nature Communications, 2018, 9, 145.	5.8	468
84	UV-Epoxy-Enabled Simultaneous Intact Transfer and Highly Efficient Doping for Roll-to-Roll Production of High-Performance Graphene Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40756-40763.	4.0	18
85	Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nature Communications, 2018, 9, 3484.	5.8	165
86	Controlling reduction degree of graphene oxide membranes for improved water permeance. Science Bulletin, 2018, 63, 788-794.	4.3	131
87	Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. Journal of Materials Science and Technology, 2018, 34, 1481-1486.	5.6	79
88	NiPS ₃ Nanosheet–Graphene Composites as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 5297-5305.	7.3	104
89	Enhanced toughness of multilayer grapheneâ€filled poly(VInyl chloride) composites prepared using meltâ€mixing method. Polymer Composites, 2017, 38, 138-146.	2.3	21
90	Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8, 14560.	5.8	184

#	Article	IF	Citations
91	Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nature Communications, 2017, 8, 14486.	5.8	154
92	Circular Graphene Platelets with Grain Size and Orientation Gradients Grown by Chemical Vapor Deposition. Advanced Materials, 2017, 29, 1605451.	11.1	8
93	Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light: Science and Applications, 2017, 6, e16204-e16204.	7.7	68
94	Phase transition and in situ construction of lateral heterostructure of 2D superconducting \hat{l}_{\pm}/\hat{l}^2 Mo ₂ C with sharp interface by electron beam irradiation. Nanoscale, 2017, 9, 7501-7507.	2.8	28
95	One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-Supercapacitors with High Energy Density. ACS Nano, 2017, 11, 7284-7292.	7.3	312
96	Ultrafast Growth of Highâ€Quality Monolayer WSe ₂ on Au. Advanced Materials, 2017, 29, 1700990.	11.1	139
97	Strongly Coupled High-Quality Graphene/2D Superconducting Mo ₂ C Vertical Heterostructures with Aligned Orientation. ACS Nano, 2017, 11, 5906-5914.	7.3	110
98	Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures. Light: Science and Applications, 2017, 6, e17057-e17057.	7.7	56
99	Nitrogenâ€Superdoped 3D Graphene Networks for Highâ€Performance Supercapacitors. Advanced Materials, 2017, 29, 1701677.	11.1	230
100	Magnetotransport in Ultrathin 2-D Superconducting Mo2C Crystals. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	9
101	High-Performance Sub-Micrometer Channel WSe ₂ Field-Effect Transistors Prepared Using a Flood–Dike Printing Method. ACS Nano, 2017, 11, 12536-12546.	7.3	7
102	Applications of carbon nanotubes and graphene produced by chemical vapor deposition. MRS Bulletin, 2017, 42, 825-833.	1.7	14
103	Phosphorene as a Polysulfide Immobilizer and Catalyst in Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1602734.	11.1	289
104	Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnology, 2017, 12, 21-25.	15.6	625
105	Electric Field Tunable Interlayer Relaxation Process and Interlayer Coupling in WSe ₂ /Graphene Heterostructures. Advanced Functional Materials, 2016, 26, 4319-4328.	7.8	47
106	Tuning the Excitonic States in MoS ₂ /Graphene van der Waals Heterostructures via Electrochemical Gating. Advanced Functional Materials, 2016, 26, 293-302.	7.8	56
107	Scalable Clean Exfoliation of Highâ€Quality Fewâ€Layer Black Phosphorus for a Flexible Lithium Ion Battery. Advanced Materials, 2016, 28, 510-517.	11.1	336
108	Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo ₂ C Crystals. ACS Nano, 2016, 10, 4504-4510.	7.3	69

#	Article	IF	Citations
109	Allâ€Carbon Thinâ€Film Transistors as a Step Towards Flexible and Transparent Electronics. Advanced Electronic Materials, 2016, 2, 1600229.	2.6	32
110	Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells. Journal of Materials Chemistry A, 2016, 4, 13795-13802.	5.2	44
111	Chemically-doped graphene with improved surface plasmon characteristics: an optical near-field study. Nanoscale, 2016, 8, 16621-16630.	2.8	14
112	Mobility controlled linear magnetoresistance with 3D anisotropy in a layered graphene pallet. Journal Physics D: Applied Physics, 2016, 49, 425005.	1.3	0
113	Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam. Physical Review B, 2016, 94, .	1.1	19
114	Elemental superdoping of graphene and carbon nanotubes. Nature Communications, 2016, 7, 10921.	5 . 8	238
115	Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2. Scientific Reports, 2016, 6, 32236.	1.6	77
116	3D Grapheneâ€Foam–Reducedâ€Grapheneâ€Oxide Hybrid Nested Hierarchical Networks for Highâ€Performan Li–S Batteries. Advanced Materials, 2016, 28, 1603-1609.	ce _{11.1}	497
117	Unique Domain Structure of Two-Dimensional α-Mo ₂ C Superconducting Crystals. Nano Letters, 2016, 16, 4243-4250.	4.5	101
118	Scalable residue-free graphene for surface-enhanced Raman scattering. Carbon, 2016, 98, 567-571.	5 . 4	16
119	Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors. Scientific Reports, 2015, 5, 17649.	1.6	10
120	Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion. Scientific Reports, 2015, 5, 13858.	1.6	50
121	Double-Balanced Graphene Integrated Mixer with Outstanding Linearity. Nano Letters, 2015, 15, 6677-6682.	4.5	37
122	Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction. Nano Research, 2015, 8, 3954-3962.	5.8	37
123	Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nature Communications, 2015, 6, 8569.	5.8	336
124	Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 2015, 14, 1135-1141.	13.3	1,045
125	A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy, 2015, 11, 356-365.	8.2	526
126	Ultrafast linear dichroism-like absorption dynamics in graphene grown by chemical vapor deposition. Journal of Applied Physics, 2014, 115, .	1.1	5

#	Article	IF	CITATIONS
127	Repeated Growth–Etching–Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition. ACS Nano, 2014, 8, 12806-12813.	7.3	100
128	The global growth of graphene. Nature Nanotechnology, 2014, 9, 726-730.	15.6	391
129	Diversity of ultrafast hot-carrier-induced dynamics and striking sub-femtosecond hot-carrier scattering times in graphene. Carbon, 2014, 72, 402-409.	5.4	14
130	Obtaining High Localized Spin Magnetic Moments by Fluorination of Reduced Graphene Oxide. ACS Nano, 2013, 7, 6729-6734.	7.3	94
131	Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20386-20391.	3.3	213
132	Graphene Foams: Superhydrophobic Graphene Foams (Small 1/2013). Small, 2013, 9, 2-2.	5.2	7
133	Lightweight and Flexible Graphene Foam Composites for Highâ€Performance Electromagnetic Interference Shielding. Advanced Materials, 2013, 25, 1296-1300.	11.1	1,703
134	A Review of Carbon Nanotube―and Grapheneâ€Based Flexible Thinâ€Film Transistors. Small, 2013, 9, 1188-1205.	5.2	268
135	Chiralityâ€Dependent Reactivity of Individual Singleâ€Walled Carbon Nanotubes. Small, 2013, 9, 1379-1386.	5.2	41
136	Tuning the Electrical and Optical Properties of Graphene by Ozone Treatment for Patterning Monolithic Transparent Electrodes. ACS Nano, 2013, 7, 4233-4241.	7. 3	84
137	When two is better than one. Nature, 2013, 497, 448-449.	13.7	34
138	Repeated and Controlled Growth of Monolayer, Bilayer and Few-Layer Hexagonal Boron Nitride on Pt Foils. ACS Nano, 2013, 7, 5199-5206.	7.3	206
139	Superhydrophobic Graphene Foams. Small, 2013, 9, 75-80.	5.2	183
140	A graphene field-effect capacitor sensor in electrolyte. Applied Physics Letters, 2012, 101, .	1.5	28
141	Progress of graphene growth on copper by chemical vapor deposition: Growth behavior and controlled synthesis. Science Bulletin, 2012, 57, 2995-2999.	1.7	15
142	The doping of reduced graphene oxide with nitrogen and its effect on the quenching of the material's photoluminescence. Carbon, 2012, 50, 5286-5291.	5.4	62
143	Quenching of fluorescence of reduced graphene oxide by nitrogen-doping. Applied Physics Letters, 2012, 100, 233112.	1.5	41
144	Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17360-17365.	3.3	728

#	Article	IF	Citations
145	Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012, 1, 107-131.	8.2	1,669
146	Synthesis and upconversion luminescence of N-doped graphene quantum dots. Applied Physics Letters, 2012, 101, .	1.5	173
147	Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. Journal of Materials Chemistry, 2012, 22, 20197.	6.7	478
148	A LiF Nanoparticleâ€Modified Graphene Electrode for Highâ€Power and Highâ€Energy Lithium Ion Batteries. Advanced Functional Materials, 2012, 22, 3290-3297.	7.8	70
149	Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications, 2012, 3, 699.	5.8	985
150	Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 2011, 5, 5463-5471.	7.3	1,904
151	Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 2011, 10, 424-428.	13.3	3,493
152	Importance of Oxygen in the Metal-Free Catalytic Growth of Single-Walled Carbon Nanotubes from SiO _{<i>x</i>} by a Vaporâ^Solidâ^Solid Mechanism. Journal of the American Chemical Society, 2011, 133, 197-199.	6.6	116
153	Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy. Physical Review B, 2010, 81, .	1.1	77
154	Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Research, 2010, 3, 16-22.	5.8	143
155	Anchoring Hydrous RuO ₂ on Graphene Sheets for Highâ€Performance Electrochemical Capacitors. Advanced Functional Materials, 2010, 20, 3595-3602.	7.8	1,122
156	Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon, 2010, 48, 3543-3550.	5.4	96
157	Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 2010, 48, 4466-4474.	5.4	1,459
158	Fluorographene: A Twoâ€Dimensional Counterpart of Teflon. Small, 2010, 6, 2877-2884.	5,2	1,146
159	Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Applied Physics Letters, 2010, 97, .	1.5	176
160	Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano, 2010, 4, 5245-5252.	7.3	869
161	Graphene Anchored with Co ₃ O ₄ Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano, 2010, 4, 3187-3194.	7.3	2,358
162	High-Energy MnO ₂ Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors. ACS Nano, 2010, 4, 5835-5842.	7.3	1,448

#	Article	IF	Citations
163	Field Emission of Singleâ€Layer Graphene Films Prepared by Electrophoretic Deposition. Advanced Materials, 2009, 21, 1756-1760.	11.1	624
164	Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers. Electrochemistry Communications, 2009, 11, 1729-1732.	2.3	160
165	Hydrogen adsorption behavior of graphene above critical temperature. International Journal of Hydrogen Energy, 2009, 34, 2329-2332.	3.8	203
166	Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 2009, 47, 493-499.	5.4	650
167	Structural evolution of carbon microcoils induced by a direct current. Carbon, 2009, 47, 670-674.	5.4	12
168	Semiconducting properties of cup-stacked carbon nanotubes. Carbon, 2009, 47, 731-736.	5.4	56
169	Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 2082-2083.	6.6	258
170	Fabrication of Graphene/Polyaniline Composite Paper <i>via In Situ</i> Anodic Electropolymerization for High-Performance Flexible Electrode. ACS Nano, 2009, 3, 1745-1752.	7.3	1,464
171	Crystallographic Tailoring of Graphene by Nonmetal SiO _{<i>x</i>} Nanoparticles. Journal of the American Chemical Society, 2009, 131, 13934-13936.	6.6	68
172	Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation. ACS Nano, 2009, 3, 411-417.	7.3	807
173	Surface and Interference Coenhanced Raman Scattering of Graphene. ACS Nano, 2009, 3, 933-939.	7.3	87
174	<i>In Situ</i> Assembly of Multi-Sheeted Buckybooks from Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 707-713.	7.3	39
175	Growth Velocity and Direct Length-Sorted Growth of Short Single-Walled Carbon Nanotubes by a Metal-Catalyst-Free Chemical Vapor Deposition Process. ACS Nano, 2009, 3, 3421-3430.	7.3	76
176	Synthesis, Purification and Opening of Short Cup-Stacked Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 4554-4560.	0.9	15
177	Direct synthesis of carbon nanotubes decorated with size-controllable Fe nanoparticles encapsulated by graphitic layers. Carbon, 2008, 46, 1417-1423.	5.4	57
178	Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures. Carbon, 2008, 46, 1892-1902.	5.4	69
179	Manganese-Catalyzed Surface Growth of Single-Walled Carbon Nanotubes with High Efficiency. Journal of Physical Chemistry C, 2008, 112, 19231-19235.	1.5	37
180	Diameter-Selective Growth of Single-Walled Carbon Nanotubes with High Quality by Floating Catalyst Method. ACS Nano, 2008, 2, 1722-1728.	7.3	88

#	Article	IF	CITATIONS
181	Total Color Difference for Rapid and Accurate Identification of Graphene. ACS Nano, 2008, 2, 1625-1633.	7.3	135
182	Synthesis and High Thermal Stability of Double-Walled Carbon Nanotubes Using Nickel Formate Dihydrate as Catalyst Precursor. Journal of Physical Chemistry C, 2007, 111, 5006-5013.	1.5	50
183	Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source. Nanotechnology, 2006, 17, 3100-3104.	1.3	29
184	Evidence for, and an Understanding of, the Initial Nucleation of Carbon Nanotubes Produced by a Floating Catalyst Method. Journal of Physical Chemistry B, 2006, 110, 16941-16946.	1.2	45
185	Raman evidence for atomic correlation between the two constituent tubes in double-walled carbon nanotubes. Physical Review B, 2006, 73, .	1.1	15
186	The Effect of Sulfur on the Structure of Carbon Nanotubes Produced by a Floating Catalyst Method. Journal of Nanoscience and Nanotechnology, 2006, 6, 1339-1345.	0.9	62
187	Aligned Double-Walled Carbon Nanotube Long Ropes with a Narrow Diameter Distribution. Journal of Physical Chemistry B, 2005, 109, 7169-7173.	1.2	45
188	Identification of the constituents of double-walled carbon nanotubes using Raman spectra taken with different laser-excitation energies. Journal of Materials Research, 2003, 18, 1251-1258.	1.2	38
189	Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane. Chemical Physics Letters, 2002, 359, 196-202.	1.2	139
190	FeCl3-functionalized graphene oxide/single-wall carbon nanotube/silicon heterojunction solar cells with an efficiency of 17.5%. Journal of Materials Chemistry A, O, , .	5.2	9
191	Resonant Scattering in Proximityâ€Coupled Graphene/Superconducting Mo ₂ C Heterostructures. Advanced Science, 0, , 2201343.	5.6	1