
Richard Cordaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9573849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transposable Elements and the Evolution of Insects. Annual Review of Entomology, 2021, 66, 355-372.	11.8	64
2	Draft Genome Sequences of Thelohania contejeani and Cucumispora dikerogammari, Pathogenic Microsporidia of Freshwater Crustaceans. Microbiology Resource Announcements, 2021, 10, .	0.6	6
3	Characterization of a Sex-Determining Region and Its Genomic Context via Statistical Estimates of Haplotype Frequencies in Daughters and Sons Sequenced in Pools. Genome Biology and Evolution, 2021, 13, .	2.5	3
4	Monitoring Insect Transposable Elements in Large Double-Stranded DNA Viruses Reveals Host-to-Virus and Virus-to-Virus Transposition. Molecular Biology and Evolution, 2021, 38, 3512-3530.	8.9	8
5	Evolutionary transition to XY sex chromosomes associated with Y-linked duplication of a male hormone gene in a terrestrial isopod. Heredity, 2021, 127, 266-277.	2.6	5
6	Comparative Genomics of Strictly Vertically Transmitted, Feminizing Microsporidia Endosymbionts of Amphipod Crustaceans. Genome Biology and Evolution, 2021, 13, .	2.5	12
7	Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer <i>Adineta vaga</i> . Science Advances, 2021, 7, eabg4216.	10.3	30
8	Impact of transposable elements on genome size variation between two closely related crustacean species. Analytical Biochemistry, 2020, 600, 113770.	2.4	9
9	ÂÂÂÂÂŴidespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. PLoS Genetics, 2020, 16, e1008864.	3.5	56
10	Wide spectrum and high frequency of genomic structural variation, including transposable elements, in large double-stranded DNA viruses. Virus Evolution, 2020, 6, vez060.	4.9	24
11	Dataset for sequencing and de novo assembly of the European endangered white-clawed crayfish (Austropotamobius pallipes) abdominal muscle transcriptome. Data in Brief, 2020, 29, 105166.	1.0	3
12	Shedding Light on the Antimicrobial Peptide Arsenal of Terrestrial Isopods: Focus on Armadillidins, a New Crustacean AMP Family. Genes, 2020, 11, 93.	2.4	12
13	Title is missing!. , 2020, 16, e1008864.		0
14	Title is missing!. , 2020, 16, e1008864.		0
15	Title is missing!. , 2020, 16, e1008864.		0
16	Title is missing!. , 2020, 16, e1008864.		0
17	Title is missing!. , 2020, 16, e1008864.		0

2

#	Article	IF	CITATIONS
19	Sex chromosomes control vertical transmission of feminizing WolbachiaÂsymbionts in an isopod. PLoS Biology, 2019, 17, e3000438.	5.6	20
20	The Genome of <i>Armadillidium vulgare</i> (Crustacea, Isopoda) Provides Insights into Sex Chromosome Evolution in the Context of Cytoplasmic Sex Determination. Molecular Biology and Evolution, 2019, 36, 727-741.	8.9	43
21	Fine-scale population structure analysis in Armadillidium vulgare (Isopoda: Oniscidea) reveals strong female philopatry. Acta Oecologica, 2019, 101, 103478.	1.1	6
22	The 2019 FASEB Science Research Conference on The Mobile DNA Conference: 25 Years of Discussion and Research, June 23–28, Palm Springs, California, USA. FASEB Journal, 2019, 33, 11625-11628.	0.5	1
23	Analyzing Horizontal Transfer of Transposable Elements on a Large Scale: Challenges and Prospects. BioEssays, 2018, 40, 1700177.	2.5	20
24	The complete mitochondrial genome of Gammarus roeselii (Crustacea, Amphipoda): insights into mitogenome plasticity and evolution. Hydrobiologia, 2018, 825, 197-210.	2.0	11
25	Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nature Ecology and Evolution, 2018, 2, 174-181.	7.8	214
26	Female-biased sex ratios unrelated to Wolbachia infection in European species of the Jaera albifrons complex (marine isopods). Journal of Experimental Marine Biology and Ecology, 2018, 509, 91-98.	1.5	2
27	Investigating the Molecular Genetic Basis of Cytoplasmic Sex Determination Caused by Wolbachia Endosymbionts in Terrestrial Isopods. Genes, 2018, 9, 290.	2.4	17
28	Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation. BMC Biology, 2018, 16, 43.	3.8	62
29	Massive horizontal transfer of transposable elements in insects. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4721-4726.	7.1	184
30	Diversity and evolution of sex determination systems in terrestrial isopods. Scientific Reports, 2017, 7, 1084.	3.3	35
31	Untangling Heteroplasmy, Structure, and Evolution of an Atypical Mitochondrial Genome by PacBio Sequencing. Genetics, 2017, 207, 269-280.	2.9	17
32	Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Current Opinion in Virology, 2017, 25, 16-22.	5.4	95
33	Evolutionary Significance of Wolbachia-to-Animal Horizontal Gene Transfer: Female Sex Determination and the f Element in the Isopod Armadillidium vulgare. Genes, 2017, 8, 186.	2.4	37
34	Continuous Influx of Genetic Material from Host to Virus Populations. PLoS Genetics, 2016, 12, e1005838.	3.5	63
35	Birth of a W sex chromosome by horizontal transfer of <i>Wolbachia</i> bacterial symbiont genome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15036-15041.	7.1	83
36	Supergroup C <i>Wolbachia</i> , mutualist symbionts of filarial nematodes, have a distinct genome structure. Open Biology, 2015, 5, 150099.	3.6	38

#	Article	IF	CITATIONS
37	Comparative paleovirological analysis of crustaceans identifies multiple widespread viral groups. Mobile DNA, 2015, 6, 16.	3.6	22
38	Multiple Conserved Heteroplasmic Sites in tRNA Genes in the Mitochondrial Genomes of Terrestrial Isopods (Oniscidea). G3: Genes, Genomes, Genetics, 2015, 5, 1317-1322.	1.8	13
39	Genomic context drives transcription of insertion sequences in the bacterial endosymbiont Wolbachia wVulC. Gene, 2015, 564, 81-86.	2.2	1
40	A call for benchmarking transposable element annotation methods. Mobile DNA, 2015, 6, 13.	3.6	83
41	Feminization of the Isopod Cylisticus convexus after Transinfection of the wVulC Wolbachia Strain of Armadillidium vulgare. PLoS ONE, 2015, 10, e0128660.	2.5	5
42	Remarkable Diversity of Endogenous Viruses in a Crustacean Genome. Genome Biology and Evolution, 2014, 6, 2129-2140.	2.5	50
43	Development of a microsatellite primer set to investigate the genetic population structure of Armadillidium nasatum (Crustacea, Oniscidea). Journal of Genetics, 2014, 93, 545-549.	0.7	2
44	Phylogenomics of "Candidatus Hepatoplasma crinochetorum,―a Lineage of Mollicutes Associated with Noninsect Arthropods. Genome Biology and Evolution, 2014, 6, 407-415.	2.5	35
45	Signs of Neutralization in a Redundant Gene Involved in Homologous Recombination in Wolbachia Endosymbionts. Genome Biology and Evolution, 2014, 6, 2654-2664.	2.5	10
46	Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nature Communications, 2014, 5, 3348.	12.8	97
47	Phylogenomics and Analysis of Shared Genes Suggest a Single Transition to Mutualism in Wolbachia of Nematodes. Genome Biology and Evolution, 2013, 5, 1668-1674.	2.5	49
48	Horizontal Transfer and Evolution of Prokaryote Transposable Elements in Eukaryotes. Genome Biology and Evolution, 2013, 5, 822-832.	2.5	38
49	Isolation and Characterization of Microsatellite Loci for the Isopod Crustacean Armadillidium vulgare and Transferability in Terrestrial Isopods. PLoS ONE, 2013, 8, e76639.	2.5	11
50	Widespread Wolbachia infection in terrestrial isopods and other crustaceans. ZooKeys, 2012, 176, 123-131.	1.1	80
51	Cargo capacity of phages and plasmids and other factors influencing horizontal transfers of prokaryote transposable elements. Mobile Genetic Elements, 2012, 2, 115-118.	1.8	12
52	Analysis of gene expression from the <i>Wolbachia</i> genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Research, 2012, 22, 2467-2477.	5.5	155
53	Selection-Driven Extinction Dynamics for Group II Introns in Enterobacteriales. PLoS ONE, 2012, 7, e52268.	2.5	17
54	Evolutionary Dynamics and Genomic Impact of Prokaryote Transposable Elements. , 2011, , 291-312.		12

#	Article	IF	CITATIONS
55	DO PHAGES EFFICIENTLY SHUTTLE TRANSPOSABLE ELEMENTS AMONG PROKARYOTES?. Evolution; International Journal of Organic Evolution, 2011, 65, 3327-3331.	2.3	20
56	The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends in Genetics, 2011, 27, 332-341.	6.7	204
57	Remarkable Abundance and Evolution of Mobile Group II Introns in Wolbachia Bacterial Endosymbionts. Molecular Biology and Evolution, 2011, 28, 685-697.	8.9	54
58	Short- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences: Insights from Wolbachia Endosymbionts. Genome Biology and Evolution, 2011, 3, 1175-1186.	2.5	55
59	Insertion Sequence Inversions Mediated by Ectopic Recombination between Terminal Inverted Repeats. PLoS ONE, 2010, 5, e15654.	2.5	11
60	Gene Conversion Maintains Nonfunctional Transposable Elements in an Obligate Mutualistic Endosymbiont. Molecular Biology and Evolution, 2009, 26, 1679-1682.	8.9	19
61	The impact of retrotransposons on human genome evolution. Nature Reviews Genetics, 2009, 10, 691-703.	16.3	1,453
62	Conservation of the Type IV Secretion System throughout Wolbachia evolution. Biochemical and Biophysical Research Communications, 2009, 385, 557-562.	2.1	49
63	ISWpi1 from Wolbachia pipientis defines a novel group of insertion sequences within the IS5 family. Gene, 2008, 409, 20-27.	2.2	21
64	Intense Transpositional Activity of Insertion Sequences in an Ancient Obligate Endosymbiont. Molecular Biology and Evolution, 2008, 25, 1889-1896.	8.9	44
65	The human genome in the LINE of fire. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19033-19034.	7.1	11
66	A Thirty Million Year-Old Inherited Heteroplasmy. PLoS ONE, 2008, 3, e2938.	2.5	34
67	In search of polymorphic Alu insertions with restricted geographic distributions. Genomics, 2007, 90, 154-158.	2.9	29
68	A SINE-based dichotomous key for primate identification. Gene, 2007, 390, 39-51.	2.2	25
69	Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons. Gene, 2007, 390, 18-27.	2.2	65
70	Molecular Characterization and Evolution of Arthropod-Pathogenic Rickettsiella Bacteria. Applied and Environmental Microbiology, 2007, 73, 5045-5047.	3.1	64
71	Structure and Evolution of the Atypical Mitochondrial Genome of Armadillidium vulgare (Isopoda,) Tj ETQq1 I	0.784314 rg 1.8	gBT ₃₃ Overlo <mark>ck</mark>
72	Teaching an old dog new tricks: SINEs of canine genomic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1157-1158.	7.1	15

#	Article	IF	CITATIONS
73	Emergence of primate genes by retrotransposon-mediated sequence transduction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17608-17613.	7.1	141
74	Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8101-8106.	7.1	219
75	Human Genomic Deletions Mediated by Recombination between Alu Elements. American Journal of Human Genetics, 2006, 79, 41-53.	6.2	289
76	Estimating the retrotransposition rate of human Alu elements. Gene, 2006, 373, 134-137.	2.2	136
77	Recently integrated Alu retrotransposons are essentially neutral residents of the human genome. Gene, 2006, 373, 138-144.	2.2	54
78	Melanesian and Asian Origins of Polynesians: mtDNA and Y Chromosome Gradients Across the Pacific. Molecular Biology and Evolution, 2006, 23, 2234-2244.	8.9	216
79	Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6611-6616.	7.1	98
80	Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Research, 2005, 33, 4040-4052.	14.5	127
81	Genetic evidence for the Mongolian ancestry of Kalmyks. American Journal of Physical Anthropology, 2005, 128, 846-854.	2.1	52
82	Modeling the Amplification Dynamics of Human Alu Retrotransposons. PLoS Computational Biology, 2005, 1, e44.	3.2	12
83	Under the genomic radar: The Stealth model of Alu amplification. Genome Research, 2005, 15, 655-664.	5.5	65
84	Genetic Evidence for the Demic Diffusion of Agriculture to India. Science, 2004, 304, 1125-1125.	12.6	34
85	The Northeast Indian Passageway: A Barrier or Corridor for Human Migrations?. Molecular Biology and Evolution, 2004, 21, 1525-1533.	8.9	108
86	Differential <i>Alu</i> Mobilization and Polymorphism Among the Human and Chimpanzee Lineages. Genome Research, 2004, 14, 1068-1075.	5.5	108
87	Retrotransposition of Alu elements: how many sources?. Trends in Genetics, 2004, 20, 464-467.	6.7	103
88	Independent Origins of Indian Caste and Tribal Paternal Lineages. Current Biology, 2004, 14, 231-235.	3.9	176
89	Humans. Current Biology, 2004, 14, R367-R369.	3.9	1
90	Alu Element Mutation Spectra: Molecular Clocks and the Effect of DNA Methylation. Journal of Molecular Biology, 2004, 344, 675-682.	4.2	78

#	Article	IF	CITATIONS
91	Y-STR haplotypes from eight south Indian groups based on five loci. Journal of Forensic Sciences, 2004, 49, 847-8.	1.6	1
92	Mitochondrial DNA analysis reveals diverse histories of tribal populations from India. European Journal of Human Genetics, 2003, 11, 253-264.	2.8	149
93	South Asia, the Andamanese, and the Genetic Evidence for an "Early―Human Dispersal out of Africa. American Journal of Human Genetics, 2003, 72, 1586-1590.	6.2	25
94	Wolbachia diversity in the Porcellionides pruinosus complex of species (Crustacea: Oniscidea): evidence for host-dependent patterns of infection. Heredity, 2001, 87, 428-434.	2.6	40