A j f Hoitink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9573076/publications.pdf Version: 2024-02-01

ΔÂΙÂΕ ΗΟΙΤΙΝΚ

#	Article	IF	CITATIONS
1	Global-scale human impact on delta morphology has led to net land area gain. Nature, 2020, 577, 514-518.	27.8	241
2	Tidal river dynamics: Implications for deltas. Reviews of Geophysics, 2016, 54, 240-272.	23.0	222
3	Tidal controls on river delta morphology. Nature Geoscience, 2017, 10, 637-645.	12.9	148
4	Subtidal water level variation controlled by river flow and tides. Water Resources Research, 2009, 45,	4.2	122
5	Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coastal Engineering, 2005, 52, 103-118.	4.0	115
6	Flow asymmetry associated with astronomical tides: Implications for the residual transport of sediment. Journal of Geophysical Research, 2003, 108, .	3.3	112
7	River flow controls on tides and tideâ€mean water level profiles in a tidal freshwater river. Journal of Geophysical Research: Oceans, 2013, 118, 4139-4151.	2.6	110
8	Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean Dynamics, 2011, 61, 2211-2228.	2.2	87
9	Morphological change in the Pearl River Delta, China. Marine Geology, 2015, 363, 202-219.	2.1	87
10	Late-Holocene evolution of the Mahakam delta, East Kalimantan, Indonesia. Sedimentary Geology, 2005, 180, 149-166.	2.1	75
11	Subtidal flow division at a shallow tidal junction. Water Resources Research, 2010, 46, .	4.2	70
12	Future Change to Tideâ€Influenced Deltas. Geophysical Research Letters, 2018, 45, 3499-3507.	4.0	68
13	Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river. Water Resources Research, 2009, 45, .	4.2	67
14	Field experiment on alternate bar development in a straight sand-bed stream. Water Resources Research, 2013, 49, 8357-8369.	4.2	64
15	Unravelling the causes of tidal asymmetry in deltas. Journal of Hydrology, 2018, 564, 588-604.	5.4	64
16	Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations. Water Resources Research, 2012, 48, .	4.2	62
17	Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel. Water Resources Research, 2011, 47, .	4.2	54
18	Discharge estimation in a backwater affected meandering river. Hydrology and Earth System Sciences, 2011, 15, 2717-2728.	4.9	52

#	Article	IF	CITATIONS
19	Discharge estimation from Hâ€ADCP measurements in a tidal river subject to sidewall effects and a mobile bed. Water Resources Research, 2011, 47, .	4.2	51
20	Human impacts on tides overwhelm the effect of sea level rise on extreme water levels in the Rhine–Meuse delta. Coastal Engineering, 2014, 90, 40-50.	4.0	51
21	Downstream hydraulic geometry of a tidally influenced river delta. Journal of Geophysical Research, 2012, 117, .	3.3	50
22	Flow structure caused by a local crossâ€sectional area increase and curvature in a sharp river bend. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1771-1783.	2.8	50
23	Distributary channels in the fluvial to tidal transition zone. Journal of Geophysical Research F: Earth Surface, 2017, 122, 696-710.	2.8	49
24	Resilience of River Deltas in the Anthropocene. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005201.	2.8	48
25	A Sharp View on River Dune Transition to Upper Stage Plane Bed. Geophysical Research Letters, 2017, 44, 11,437.	4.0	38
26	Prediction of Discharge in a Tidal River Using Artificial Neural Networks. Journal of Hydrologic Engineering - ASCE, 2014, 19, .	1.9	36
27	Sediment discharge division at two tidally influenced river bifurcations. Water Resources Research, 2013, 49, 2119-2134.	4.2	35
28	Water and suspended sediment division at a stratified tidal junction. Journal of Geophysical Research: Oceans, 2013, 118, 1459-1472.	2.6	33
29	Tidally-induced clouds of suspended sediment connected to shallow-water coral reefs. Marine Geology, 2004, 208, 13-31.	2.1	31
30	Tidal flow asymmetry in the diurnal regime: bed-load transport and morphologic changes around the Red River Delta. Ocean Dynamics, 2004, 54, 424.	2.2	29
31	Hydrodynamic control of the supply of reworked terrigenous sediment to coral reefs in the Bay of Banten (NW Java, Indonesia). Estuarine, Coastal and Shelf Science, 2003, 58, 743-755.	2.1	27
32	Tidal impacts on the subtidal flow division at the main bifurcation in the Yangtze River Delta. Estuarine, Coastal and Shelf Science, 2017, 196, 301-314.	2.1	27
33	Hydrology of inland tropical lowlands: the Kapuas and Mahakam wetlands. Hydrology and Earth System Sciences, 2017, 21, 2579-2594.	4.9	27
34	Preliminary results of a finite-element, multi-scale model of the Mahakam Delta (Indonesia). Ocean Dynamics, 2011, 61, 1107-1120.	2.2	26
35	Morphodynamic effects of riparian vegetation growth after stream restoration. Earth Surface Processes and Landforms, 2018, 43, 1591-1607.	2.5	26

Sharp bends associated with deep scours in a tropical river: The river Mahakam (East Kalimantan,) Tj ETQq000 rgB $\frac{1}{24}$ (Overlock 10 Tf 50 24)

#	Article	IF	CITATIONS
37	Prerequisites for Accurate Monitoring of River Discharge Based on Fixed‣ocation Velocity Measurements. Water Resources Research, 2018, 54, 1058-1076.	4.2	24
38	Coupled ADCPs can yield complete Reynolds stress tensor profiles in geophysical surface flows. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	23
39	Flood occurrence mapping of the middle Mahakam lowland area using satellite radar. Hydrology and Earth System Sciences, 2012, 16, 1805-1816.	4.9	23
40	Chute cutoff as a morphological response to stream reconstruction: The possible role of backwater. Water Resources Research, 2015, 51, 3339-3352.	4.2	23
41	Improved flow velocity estimates from moving-boat ADCP measurements. Water Resources Research, 2014, 50, 4186-4196.	4.2	22
42	Suspended sediment load in the tidal zone of an Indonesian river. Hydrology and Earth System Sciences, 2012, 16, 4191-4204.	4.9	21
43	Anthropogenic Effects on the Contemporary Sediment Budget of the Lower Rhineâ€Meuse Delta Channel Network. Earth's Future, 2021, 9, e2020EF001869.	6.3	21
44	Multiscale structure of meanders. Geophysical Research Letters, 2016, 43, 3288-3297.	4.0	20
45	Flow and Suspended Sediment Division at Two Highly Asymmetric Bifurcations in a River Delta: Implications for Channel Stability. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2358-2380.	2.8	19
46	Propagation of tides along a river with a sloping bed. Journal of Fluid Mechanics, 2019, 872, 39-73.	3.4	19
47	Morphological assessment of reconstructed lowland streams in the Netherlands. Advances in Water Resources, 2015, 81, 161-171.	3.8	16
48	Tidal and subtidal flow patterns on a tropical continental shelf semiâ€insulated by coral reefs. Journal of Geophysical Research, 2010, 115, .	3.3	15
49	Wind forcing controls on river plume spreading on a tropical continental shelf. Journal of Geophysical Research: Oceans, 2015, 120, 16-35.	2.6	15
50	Simulations of the flow in the Mahakam river–lake–delta system, Indonesia. Environmental Fluid Mechanics, 2016, 16, 603-633.	1.6	15
51	Scaleâ€Ðependent Evanescence of River Dunes During Discharge Extremes. Geophysical Research Letters, 2020, 47, e2019GL085902.	4.0	14
52	Morphodynamic regime change in a reconstructed lowland stream. Earth Surface Dynamics, 2014, 2, 279-293.	2.4	13
53	Bed morphodynamics at the intake of a side channel controlled by sill geometry. Advances in Water Resources, 2019, 134, 103452.	3.8	13
54	Impact of river discharge seasonality change on tidal duration asymmetry in the Yangtze River Estuary. Scientific Reports, 2020, 10, 6304.	3.3	13

#	Article	IF	CITATIONS
55	Rapidly Migrating Secondary Bedforms Can Persist on the Lee of Slowly Migrating Primary River Dunes. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005918.	2.8	13
56	Quantified turbulent diffusion of suspended sediment using acoustic Doppler current profilers. Geophysical Research Letters, 2013, 40, 5692-5697.	4.0	12
57	Application of a Line Laser Scanner for Bed Form Tracking in a Laboratory Flume. Water Resources Research, 2018, 54, 2078-2094.	4.2	12
58	Exposure of coastal ecosystems to river plume spreading across a near-equatorial continental shelf. Continental Shelf Research, 2018, 153, 1-15.	1.8	11
59	Anatomy of simultaneous flood peaks at a lowland confluence. Hydrology and Earth System Sciences, 2018, 22, 5599-5613.	4.9	10
60	Field Verification of ADCP Surface Gravity Wave Elevation Spectra. Journal of Atmospheric and Oceanic Technology, 2007, 24, 912-922.	1.3	9
61	River scale model of a training dam using lightweight granulates. Journal of Hydro-Environment Research, 2014, 8, 88-94.	2.2	9
62	Effect of nonâ€migrating bars on dune dynamics in a lowland river. Earth Surface Processes and Landforms, 2020, 45, 1361-1375.	2.5	9
63	Comment on "On the role of diurnal tides in contributing to asymmetries in tidal probability distribution functions in areas of predominantly semi-diurnal tide―by P.L. Woodworth, D.L. Blackman, D.T. Pugh and J.M. Vassie [Estuarine, Coastal and Shelf Science 64 (2005) 235–240]. Estuarine, Coastal and Shelf Science, 2006, 67, 340,341	2.1	8
64	Mixing and stratification in a tropical tidal embayment subject to a distributed freshwater source. Journal of Marine Systems, 2011, 88, 34-44.	2.1	8
65	Historical analysis indicates seepage control on initiation of meandering. Earth Surface Processes and Landforms, 2013, 38, 888-897.	2.5	8
66	Modelling fine-grained sediment transport in the Mahakam land–sea continuum, Indonesia. Journal of Hydro-Environment Research, 2016, 13, 103-120.	2.2	8
67	Subtidal Flow Reversal Associated With Sediment Accretion in a Delta Channel. Water Resources Research, 2019, 55, 10781-10795.	4.2	8
68	Diversion of Flow and Sediment Toward a Side Channel Separated From a River by a Longitudinal Training Dam. Water Resources Research, 2020, 56, e2019WR026750.	4.2	7
69	Quantifying Hydraulic Roughness From Field Data: Can Dune Morphology Tell the Whole Story?. Water Resources Research, 2021, 57, e2021WR030329.	4.2	7
70	The Influence of Slipface Angle on Fluvial Dune Growth. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005959.	2.8	6
71	Comment on "The origin of neap–spring tidal cycles―by Erik P. Kvale [Marine Geology 235 (2006) 5–18] Marine Geology, 2008, 248, 122-125.]. _{2.1}	5
72	Analytical model captures intratidal variation in salinity in a convergent, well-mixed estuary. Hydrology and Earth System Sciences, 2019, 23, 4309-4322.	4.9	5

#	Article	IF	CITATIONS
73	Flow Bifurcation at a Longitudinal Training Dam: Effects on Local Morphology. E3S Web of Conferences, 2018, 40, 05020.	0.5	4
74	Flow and bed morphology response to the introduction of wood logs for sediment management. Advances in Water Resources, 2019, 130, 1-11.	3.8	4
75	Idealized Model for the Deflection of Sediment Into Lateral Branches of Lowland Rivers. Water Resources Research, 2020, 56, e2019WR026602.	4.2	4
76	Largeâ€ 5 cale Scour in Response to Tidal Dominance in Estuaries. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF006048.	2.8	4
77	On the use of horizontal acoustic Doppler profilers for continuous bed shear stress monitoring. International Journal of Sediment Research, 2013, 28, 260-268.	3.5	3
78	Peak Water Level Response to Channel Deepening Depends on Interaction Between Tides and the River Flow. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	3
79	Inferring Suspended Sediment Carbon Content and Particle Size at High Frequency From the Optical Response of a Submerged Spectrometer. Water Resources Research, 2022, 58, .	4.2	3
80	Experimental investigation of low-angle dune morphodynamics. E3S Web of Conferences, 2018, 40, 02056.	0.5	2
81	Scale model of a training dam using lightweight granulates. E3S Web of Conferences, 2018, 40, 05074.	0.5	1
82	Strategic Plan for the <i>Journal of Geophysical Research—Earth Surface</i> . Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	1
83	Thank You to Our 2021 Reviewers, and a New Coâ€Reviewing Protocol. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	1
84	Three-Dimensional Velocity Structure and Suspended Sediments at Coral Reefs in Teluk Banten, Indonesia. , 2001, , 3345.		0
85	From River Basin to Barrier Reef: Pathways of Coastal Sediments. , 2007, , .		0
86	Thank You to Our 2018 Peer Reviewers. Journal of Geophysical Research F: Earth Surface, 2019, 124, 868-873.	2.8	0
87	Thank You to Our 2019 Reviewers. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005650.	2.8	0
88	Thank You to Our 2020 Reviewers. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006154.	2.8	0
89	Plain Language Summaries to be Required for Submission to Journal of Geophysical Research: Earth Surface. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006323.	2.8	0