
Jocelyn Achard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/957295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D kinetic Monte-Carlo simulations of diamond growth on (1 0 0) surfaces. Diamond and Related Materials, 2022, 123, 108865.	3.9	4
2	Improving NV centre density during diamond growth by CVD process using N2O gas. Diamond and Related Materials, 2022, 123, 108884.	3.9	7
3	Enhancement of the creation yield of NV ensembles in a chemically vapour deposited diamond. Carbon, 2022, 194, 282-289.	10.3	13
4	Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates. Applied Physics Letters, 2021, 118, .	3.3	16
5	Surface production of negative ions from pulse-biased nitrogen doped diamond within a low-pressure deuterium plasma. Journal Physics D: Applied Physics, 2021, 54, 435201.	2.8	2
6	Largeâ€5cale Fabrication of Highly Emissive Nanodiamonds by Chemical Vapor Deposition with Controlled Doping by SiV and GeV Centers from a Solid Source. Advanced Materials Interfaces, 2020, 7, 1901408.	3.7	26
7	High NV density in a pink CVD diamond grown with N2O addition. Carbon, 2020, 170, 421-429.	10.3	29
8	Epitaxial diamond on Ir/ SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes. Diamond and Related Materials, 2020, 105, 107768.	3.9	18
9	Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications. Journal Physics D: Applied Physics, 2020, 53, 313001.	2.8	59
10	Microstructure and biological evaluation of nanocrystalline diamond films deposited on titanium substrates using distributed antenna array microwave system. Diamond and Related Materials, 2020, 103, 107700.	3.9	3
11	Enhancing surface production of negative ions using nitrogen doped diamond in a deuterium plasma. Journal Physics D: Applied Physics, 2020, 53, 465204.	2.8	4
12	Impact of positive ion energy on carbon-surface production of negative ions in deuterium plasmas. Journal Physics D: Applied Physics, 2019, 52, 435201.	2.8	6
13	(111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields. Applied Physics Letters, 2019, 115, 192401.	3.3	14
14	Defect and Threading Dislocations in Single Crystal Diamond: A Focus on Boron and Nitrogen Codoping. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900581.	1.8	9
15	Synthesis of Loose Nanodiamonds Containing Nitrogen-Vacancy Centers for Magnetic and Thermal Sensing. ACS Applied Nano Materials, 2019, 2, 5952-5962.	5.0	18
16	Experimental characterization of a ns-pulsed micro-hollow cathode discharge (MHCD) array in a N ₂ /Ar mixture. Plasma Sources Science and Technology, 2019, 28, 035003.	3.1	8
17	Pulsed DC bias for the study of negative-ion production on surfaces of insulating materials in low pressure hydrogen plasmas. Journal of Applied Physics, 2019, 125, .	2.5	5
18	Initialization and Readout of Nuclear Spins via a Negatively Charged Silicon-Vacancy Center in Diamond. Physical Review Letters, 2019, 122, 190503.	7.8	53

#	Article	IF	CITATIONS
19	Optimizing synthetic diamond samples for quantum sensing technologies by tuning the growth temperature. Diamond and Related Materials, 2019, 96, 85-89.	3.9	6
20	Thick and widened high quality heavily boron doped diamond single crystals synthetized with high oxygen flow under high microwave power regime. Diamond and Related Materials, 2019, 94, 88-91.	3.9	10
21	Investigation of a distributed antenna array microwave system for the three-dimensional low-temperature growth of nanocrystalline diamond films. Diamond and Related Materials, 2019, 94, 28-36.	3.9	6
22	Ohmic contacts study of P+N diodes on (111) and (100) diamond. , 2019, , .		0
23	Ohmic graphite-metal contacts on oxygen-terminated lightly boron-doped CVD monocrystalline diamond. Diamond and Related Materials, 2019, 92, 18-24.	3.9	13
24	Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector. Diamond and Related Materials, 2018, 83, 162-169.	3.9	26
25	Single-crystal and polycrystalline diamond erosion studies in Pilot-PSI. Journal of Nuclear Materials, 2018, 500, 110-118.	2.7	3
26	Modelling of low-temperature/large-area distributed antenna array microwave-plasma reactor used for nanocrystalline diamond deposition. EPJ Applied Physics, 2018, 81, 10804.	0.7	2
27	Selfâ€Assembled Silica Nanoparticles for Diamond Nanoâ€Structuration. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800391.	1.8	3
28	Characteristics of He Ion Implanted Layers on Singleâ€Crystal Diamond. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800264.	1.8	3
29	Microwave Device Characterization Using a Widefield Diamond Microscope. Physical Review Applied, 2018, 10, .	3.8	64
30	Study of Low Temperature Deposition of Nanocrystalline Diamond Films on ZnO/LiNbO ₃ Layered Structures Suitable for Waveguiding Layer Acoustic Wave Devices. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800251.	1.8	5
31	Nanocrystalline diamond films grown at very low substrate temperature using a distributed antenna array microwave process: Towards polymeric substrate coating. Diamond and Related Materials, 2017, 75, 44-51.	3.9	20
32	Reduction of Dislocations in Single Crystal Diamond by Lateral Growth over a Macroscopic Hole. Advanced Materials, 2017, 29, 1604823.	21.0	48
33	Growth processes of nanocrystalline diamond films in microwave cavity and distributed antenna array systems: A comparative study. Diamond and Related Materials, 2017, 71, 53-62.	3.9	12
34	Alternative solutions to caesium in negative-ion sources: a study of negative-ion surface production on diamond in H ₂ /D ₂ plasmas. New Journal of Physics, 2017, 19, 025010.	2.9	33
35	Diamond Schottky diodes operating at 473 K. EPE Journal (European Power Electronics and Drives) Tj ETQq1 1 0	.784314 r 0.7	gBT /Overloci
36	Highly photostable NV centre ensembles in CVD diamond produced by using N2O as the doping gas.	3.3	20

Applied Physics Letters, 2017, 111, .

3.320

#	Article	IF	CITATIONS
37	Thick heavily boron doped CVD diamond films homoepitaxially grown on (111)-oriented substrates. Diamond and Related Materials, 2017, 79, 108-111.	3.9	11
38	Investigation of Nucleation and Growth of Nanocrystalline Diamond Films Deposited at Low Temperature Using In Situ Laser Reflectance Interferometry. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700205.	1.8	4
39	Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from New Diamond Technology. Diamond and Related Materials, 2017, 77, 146-152.	3.9	42
40	Identification of Dislocations in Synthetic Chemically Vapor Deposited Diamond Single Crystals. Crystal Growth and Design, 2016, 16, 2741-2746.	3.0	52
41	Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diamond and Related Materials, 2016, 66, 188-195.	3.9	14
42	Production of bulk NV centre arrays by shallow implantation and diamond CVD overgrowth. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2594-2600.	1.8	21
43	Lowâ€ŧemperature deposition of nanocrystalline diamond films on silicon nitride substrates using distributed antenna array PECVD system. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2575-2581.	1.8	14
44	Picosecond dynamics of free and bound excitons in doped diamond. Physical Review B, 2016, 93, .	3.2	8
45	Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy. Diamond and Related Materials, 2016, 66, 67-76.	3.9	26
46	Growth of thick and heavily boron-doped (113)-oriented CVD diamond films. Diamond and Related Materials, 2016, 66, 61-66.	3.9	22
47	Production of bulk NV centre arrays by shallow implantation and diamond CVD overgrowth (Phys.) Tj ETQq1 1 0.	784314 rg 1.8	gBŢ /Overlock
48	Polarization effect on timeâ€ofâ€flight measurements performed on a CVD diamond single crystal. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2636-2640.	1.8	6
49	Microstructure and growth kinetics of nanocrystalline diamond films deposited in large area/low temperature distributed antenna array microwaveâ€plasma reactor. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2611-2615.	1.8	18
50	Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates. Diamond and Related Materials, 2015, 56, 47-53.	3.9	50
51	R&D around a photoneutralizer-based NBI system (Siphore) in view of a DEMO Tokamak steady state fusion reactor. Nuclear Fusion, 2015, 55, 123020.	3.5	50
52	Magnetic imaging with an ensemble of nitrogen-vacancy centers in diamond. European Physical Journal D, 2015, 69, 1.	1.3	70
53	Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks. Diamond and Related Materials, 2015, 58, 62-68.	3.9	29
54	Nitrogen vacancies (NV) centers in diamond for magnetic sensors and quantum sensing. , 2015, , .		1

Nitrogen vacancies (NV) centers in diamond for magnetic sensors and quantum sensing. , 2015, , . 54

4

#	Article	IF	CITATIONS
55	Temperature dependent creation of nitrogen-vacancy centers in single crystal CVD diamond layers. Diamond and Related Materials, 2015, 51, 55-60.	3.9	39
56	Ultrafast Deposition of Diamond by Plasma-Enhanced CVD. , 2014, , 217-268.		7
57	Effect of the process parameters of inductively coupled plasma reactive ion etching on the fabrication of diamond nanotips. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2343-2346.	1.8	5
58	Improvement of dislocation density in thick CVD single crystal diamond films by coupling H ₂ /O ₂ plasma etching and chemoâ€mechanical or ICP treatment of HPHT substrates. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2264-2267.	1.8	45
59	Optical study of defects in thick undoped CVD synthetic diamond layers. Diamond and Related Materials, 2014, 41, 25-33.	3.9	29
60	High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates. Diamond and Related Materials, 2014, 41, 34-40.	3.9	44
61	Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample. Applied Physics Letters, 2014, 104, .	3.3	96
62	Birefringence Microscopy of Unit Dislocations in Diamond. Crystal Growth and Design, 2014, 14, 5761-5766.	3.0	35
63	Passive charge state control of nitrogenâ€vacancy centres in diamond using phosphorous and boron doping. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2268-2273.	1.8	37
64	Photonic nano-structures on (111)-oriented diamond. Applied Physics Letters, 2014, 104, .	3.3	74
65	Low temperature and large area deposition of nanocrystalline diamond films with distributed antenna array microwave-plasma reactor. Diamond and Related Materials, 2014, 47, 58-65.	3.9	43
66	Grafting polymer–protein bioconjugate to boron-doped diamond using aryl diazonium coupling agents. Diamond and Related Materials, 2013, 40, 60-68.	3.9	17
67	X-ray micro beam analysis of the photoresponse of an enlarged CVD diamond single crystal. Diamond and Related Materials, 2013, 34, 36-40.	3.9	4
68	Influence of surface misorientation of <scp>HPHT</scp> diamond substrates on crystal morphologies and threading dislocations propagation. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1985-1990.	1.8	12
69	Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges. Comptes Rendus Physique, 2013, 14, 169-184.	0.9	133
70	Growth strategy for controlling dislocation densities and crystal morphologies of single crystal diamond by using pyramidal-shape substrates. Diamond and Related Materials, 2013, 33, 71-77.	3.9	34
71	X-Ray Beam Position Monitor Based on a Single Crystal Diamond Performing Bunch by Bunch Detection. Journal of Physics: Conference Series, 2013, 425, 212001.	0.4	5
72	CATHODOLUMINESCENCE AND PHOTOLUMINESCENCE OF NV CENTERS. International Journal of Nanoscience, 2012, 11, 1240016.	0.7	0

#	Article	IF	CITATIONS
73	Bunch by bunch beam monitoring in 3 rd and 4 th generation light sources by means of single crystal diamond detectors and quantum well devices. Proceedings of SPIE, 2012, , .	0.8	5
74	An assessment of contact metallization for high power and high temperature diamond Schottky devices. Diamond and Related Materials, 2012, 27-28, 23-28.	3.9	26
75	Determination of exciton diffusion lengths in isotopically engineered diamond junctions. Applied Physics Letters, 2012, 100, .	3.3	17
76	Homoepitaxial boronâ€doped diamond with very low compensation. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1750-1753.	1.8	32
77	Freestanding CVD boron doped diamond single crystals: A substrate for vertical power electronic devices?. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1651-1658.	1.8	33
78	Etchâ€pit formation mechanism induced on HPHT and CVD diamond single crystals by H ₂ /O ₂ plasma etching treatment. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1715-1720.	1.8	72
79	Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices. Applied Physics Letters, 2012, 100, .	3.3	25
80	Dislocations and impurities introduced from etch-pits at the epitaxial growth resumption of diamond. Diamond and Related Materials, 2011, 20, 875-881.	3.9	32
81	Engineered arrays of nitrogen-vacancy color centers in diamond based on implantation of CN ^{â~'} molecules through nanoapertures. New Journal of Physics, 2011, 13, 025014.	2.9	75
82	Thick boron doped diamond single crystals for high power electronics. Diamond and Related Materials, 2011, 20, 145-152.	3.9	66
83	Effect of argon addition on the growth of thick single crystal diamond by highâ€power plasma CVD. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2028-2032.	1.8	28
84	Influence of oxygen addition on the crystal shape of CVD boron doped diamond. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2023-2027.	1.8	20
85	Boron acceptor concentration in diamond from excitonic recombination intensities. Physical Review B, 2011, 83, .	3.2	44
86	Diode Schottky sur diamant CVD. Simulation, réalisation technologique et étude de protection périphérique. European Journal of Electrical Engineering, 2011, 14, 553-567.	0.3	0
87	Growth of thick heavily boron-doped diamond single crystals: Effect of microwave power density. Applied Physics Letters, 2010, 97, .	3.3	36
88	Enhanced generation of single optically active spins in diamond by ion implantation. Applied Physics Letters, 2010, 96, .	3.3	84
89	Evolution of Diamond Crystal Shape with Boron Concentration during CVD Growth. , 2010, , .		1
90	CVD diamond Schottky barrier diode, carrying out and characterization. Diamond and Related Materials, 2010, 19, 792-795.	3.9	18

#	Article	IF	CITATIONS
91	Identification of etchâ€pit crystallographic faces induced on diamond surface by H ₂ /O ₂ etching plasma treatment. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1949-1954.	1.8	55
92	Ultralong spin coherence time in isotopically engineered diamond. Nature Materials, 2009, 8, 383-387.	27.5	1,596
93	Surface transformation of graphite or diamond following Highly Charged Ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 678-682.	1.4	2
94	Defect analysis and excitons diffusion in undoped homoepitaxial diamond films after polishing and oxygen plasma etching. Diamond and Related Materials, 2009, 18, 1205-1210.	3.9	45
95	High quality, large surface area, homoepitaxial MPACVD diamond growth. Diamond and Related Materials, 2009, 18, 683-697.	3.9	105
96	Mise en place d'une filière pour la réalisation de composants de puissance en diamant. Revue Internationale De Génie électrique, 2009, 12, 237-253.	0.0	0
97	Dependence of CVD diamond growth rate on substrate orientation as a function of process parameters in the high microwave power density regime. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2114-2120.	1.8	40
98	Geometric modeling of homoepitaxial CVD diamond growth: I. The {100}{111}{110}{113} system. Journal of Crystal Growth, 2008, 310, 187-203.	1.5	55
99	Single crystal CVD diamond growth strategy by the use of a 3D geometrical model: Growth on (113) oriented substrates. Diamond and Related Materials, 2008, 17, 1067-1075.	3.9	37
100	Study of CVD diamond films for thermal management in power electronics. , 2007, , .		2
101	High quality MPACVD diamond single crystal growth: high microwave power density regime. Journal Physics D: Applied Physics, 2007, 40, 6175-6188.	2.8	157
102	Photoconductive properties of lightly N-doped single crystal CVD diamond films. Diamond and Related Materials, 2007, 16, 953-957.	3.9	10
103	Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals. Diamond and Related Materials, 2007, 16, 685-689.	3.9	105
104	Elastic properties of single crystal diamond made by CVD. Diamond and Related Materials, 2007, 16, 962-965.	3.9	11
105	Diamond detectors for synchrotron radiation X-ray applications. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 558-561.	2.9	6
106	Improvement of energetic efficiency for homoepitaxial diamond growth in a H ₂ /CH ₄ pulsed discharge. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2847-2853.	1.8	10
107	Dosimetric properties of thick single CVD crystal diamonds. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3030-3035.	1.8	3
108	Dislocation imaging for electronics application crystal selection. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 4298-4304.	1.8	29

#	Article	IF	CITATIONS
109	Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition. Diamond and Related Materials, 2006, 15, 1700-1707.	3.9	168
110	3D crystal growth model for understanding the role of plasma pre-treatment on CVD diamond crystal shape. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3049-3055.	1.8	38
111	Multiple growth and characterization of thick diamond single crystals using chemical vapour deposition working in pulsed mode. Journal of Crystal Growth, 2006, 291, 533-539.	1.5	27
112	The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD. Journal of Crystal Growth, 2005, 284, 396-405.	1.5	95
113	Effect of increasing the microwave density in both continuous and pulsed wave mode on the growth of monocrystalline diamond films. Physica Status Solidi A, 2005, 202, 2059-2065.	1.7	30
114	Electro-optical response of a single-crystal diamond ultraviolet photoconductor in transverse configuration. Applied Physics Letters, 2005, 86, 213504.	3.3	40
115	Homoepitaxial deposition of high-quality thick diamond films: effect of growth parameters. Diamond and Related Materials, 2005, 14, 249-254.	3.9	81
116	Experimental CVD Synthetic Diamonds from LIMHP-CNRS, France. Gems & Gemology, 2005, 41, 234-244.	0.6	14
117	The use of CVD diamond for high-power switching using electron beam exitation. Diamond and Related Materials, 2004, 13, 876-880.	3.9	14
118	Oxygen plasma pre-treatments for high quality homoepitaxial CVD diamond deposition. Physica Status Solidi A, 2004, 201, 2419-2424.	1.7	85
119	The use of CVD diamond for high-power switching using electron beam exitation. Diamond and Related Materials, 2004, 13, 876-876.	3.9	0
120	Bulk photoconductivity of CVD diamond films for UV and XUV detection. Diamond and Related Materials, 2003, 12, 642-646.	3.9	19
121	Bulk CVD diamond devices for UV and XUV detection. Diamond and Related Materials, 2003, 12, 1804-1808.	3.9	4
122	Photoconductivity of highly oriented and randomly oriented diamond films for the detection of fast UV laser pulses. Diamond and Related Materials, 2002, 11, 423-426.	3.9	15
123	Temporal response of UV sensors made of highly oriented diamond films by 193 and 313 nm laser pulses. Diamond and Related Materials, 2001, 10, 1794-1798.	3.9	19
124	CVD diamond films: from growth to applications. Current Applied Physics, 2001, 1, 479-496.	2.4	168
125	Comments on the appearance of "mirror―peaks in mobility spectrum analysis of semiconducting devices. Applied Surface Science, 2000, 158, 345-352.	6.1	3
126	Low roughness diamond films produced at temperatures less than 600°C. Diamond and Related Materials, 2000, 9, 1965-1970.	3.9	22

#	Article	IF	CITATIONS
127	Electrical characterization of InP epitaxial layers using mobility spectrum technique. Applied Surface Science, 1999, 142, 455-459.	6.1	4