David J Sharp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9572588/publications.pdf

Version: 2024-02-01

91 papers	12,163 citations	41344 49 h-index	4	90 g-index
95 all docs	95 docs citations	95 times ranked		15399 citing authors

#	Article	IF	CITATIONS
1	The relationship between road traffic collision dynamics and traumatic brain injury pathology. Brain Communications, 2022, 4, fcac033.	3.3	12
2	Detection of Glial Fibrillary Acidic Protein in Patient Plasma Using On-Chip Graphene Field-Effect Biosensors, in Comparison with ELISA and Single-Molecule Array. ACS Sensors, 2022, 7, 253-262.	7.8	20
3	Brain volume abnormalities and clinical outcomes following paediatric traumatic brain injury. Brain, 2022, 145, 2920-2934.	7.6	8
4	A Finite Element Model of Cerebral Vascular Injury for Predicting Microbleeds Location. Frontiers in Bioengineering and Biotechnology, 2022, 10, 860112.	4.1	7
5	A link between frontal white matter integrity and dizziness in cerebral small vessel disease. Neurolmage: Clinical, 2022, 35, 103098.	2.7	8
6	Detecting axonal injury in individual patients after traumatic brain injury. Brain, 2021, 144, 92-113.	7.6	64
7	Assessing the Severity of Traumatic Brain Injury—Time for a Change?. Journal of Clinical Medicine, 2021, 10, 148.	2.4	52
8	Traumatic brain injury: a comparison of diffusion and volumetric magnetic resonance imaging measures. Brain Communications, 2021, 3, fcab006.	3.3	8
9	Psychotropic and pain medication use in individuals with traumatic brain injury—a Swedish total population cohort study of 240 000 persons. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 519-527.	1.9	6
10	Multiscale modelling of cerebrovascular injury reveals the role of vascular anatomy and parenchymal shear stresses. Scientific Reports, 2021, 11, 12927.	3.3	11
11	White matter abnormalities in active elite adult rugby players. Brain Communications, 2021, 3, fcab133.	3.3	19
12	Investigating the interaction between white matter and brain state on tDCS-induced changes in brain network activity. Brain Stimulation, 2021, 14, 1261-1270.	1.6	5
13	Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury. Science Translational Medicine, 2021, 13, eabg9922.	12.4	74
14	From biomechanics to pathology: predicting axonal injury from patterns of strain after traumatic brain injury. Brain, 2021, 144, 70-91.	7.6	47
15	Conferences in the time of COVID: notes on organizing and delivering the first Brain Conference. Brain Communications, 2021, 3, fcab142.	3.3	3
16	Abnormal dorsal attention network activation in memory impairment after traumatic brain injury. Brain, 2021, 144, 114-127.	7.6	17
17	Vestibular agnosia in traumatic brain injury and its link to imbalance. Brain, 2021, 144, 128-143.	7.6	36
18	Plasma glial fibrillary acidic protein and neurofilament light chain, but not tau, are biomarkers of sports-related mild traumatic brain injury. Brain Communications, 2020, 2, fcaa137.	3.3	22

#	Article	IF	CITATIONS
19	Multicentre longitudinal study of fluid and neuroimaging BIOmarkers of AXonal injury after traumatic brain injury: the BIO-AX-TBI study protocol. BMJ Open, 2020, 10, e042093.	1.9	11
20	Diffuse axonal injury predicts neurodegeneration after moderate–severe traumatic brain injury. Brain, 2020, 143, 3685-3698.	7.6	69
21	Distinct dopaminergic abnormalities in traumatic brain injury and Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 631-637.	1.9	8
22	Distinct patterns of structural damage underlie working memory and reasoning deficits after traumatic brain injury. Brain, 2020, 143, 1158-1176.	7.6	42
23	Mechanisms of tensile failure of cerebrospinal fluid in blast traumatic brain injury. Extreme Mechanics Letters, 2020, 38, 100739.	4.1	13
24	Dopamine D2/D3 receptor abnormalities after traumatic brain injury and their relationship to post-traumatic depression. Neurolmage: Clinical, 2019, 24, 101950.	2.7	15
25	In vivo detection of cerebral tau pathology in long-term survivors of traumatic brain injury. Science Translational Medicine, 2019, 11, .	12.4	56
26	Traumatic axonal injury influences the cognitive effect of non-invasive brain stimulation. Brain, 2019, 142, 3280-3293.	7.6	25
27	Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1221-1233.	1.9	183
28	Stratifying drug treatment of cognitive impairments after traumatic brain injury using neuroimaging. Brain, 2019, 142, 2367-2379.	7.6	35
29	The traumatic brain injury mitigation effects of a new viscoelastic add-on liner. Scientific Reports, 2019, 9, 3471.	3.3	28
30	Brain state and polarity dependent modulation of brain networks by transcranial direct current stimulation. Human Brain Mapping, 2019, 40, 904-915.	3 . 6	108
31	Cognitive enhancement with Salience Network electrical stimulation is influenced by network structural connectivity. Neurolmage, 2019, 185, 425-433.	4.2	30
32	Dopaminergic abnormalities following traumatic brain injury. Brain, 2018, 141, 797-810.	7.6	53
33	Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury. Brain, 2018, 141, 822-836.	7.6	111
34	Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury. Brain, 2018, 141, 148-164.	7.6	56
35	Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain, 2018, 141, 459-471.	7.6	143
36	Spatiotemporal Distribution of \hat{l}^2 -Amyloid in Alzheimer Disease Is the Result of Heterogeneous Regional Carrying Capacities. Journal of Nuclear Medicine, 2018, 59, 822-827.	5.0	44

#	Article	lF	CITATIONS
37	Increased brain-predicted aging in treated HIV disease. Neurology, 2017, 88, 1349-1357.	1.1	200
38	Serum insulinâ€like growth factorâ€ <scp>I</scp> levels are associated with improved white matter recovery after traumatic brain injury. Annals of Neurology, 2017, 82, 30-43.	5.3	19
39	Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain, 2017, 140, 333-343.	7.6	211
40	Hearables: Multimodal physiological in-ear sensing. Scientific Reports, 2017, 7, 6948.	3.3	107
41	Interictal activity is an important contributor to abnormal intrinsic network connectivity in paediatric focal epilepsy. Human Brain Mapping, 2017, 38, 221-236.	3.6	33
42	Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. ELife, 2017, 6, .	6.0	147
43	Long-Term Outcomes Associated with Traumatic Brain Injury in Childhood and Adolescence: A Nationwide Swedish Cohort Study of a Wide Range of Medical and Social Outcomes. PLoS Medicine, 2016, 13, e1002103.	8.4	188
44	Novel Modeling of Task vs. Rest Brain State Predictability Using a Dynamic Time Warping Spectrum: Comparisons and Contrasts with Other Standard Measures of Brain Dynamics. Frontiers in Computational Neuroscience, 2016, 10, 46.	2.1	13
45	Cortical Entropy, Mutual Information and Scale-Free Dynamics in Waking Mice. Cerebral Cortex, 2016, 26, 3945-3952.	2.9	71
46	Prevalence and correlates of vitamin D deficiency in adults after traumatic brain injury. Clinical Endocrinology, 2016, 85, 636-644.	2.4	30
47	Disconnection between the default mode network and medial temporal lobes in post-traumatic amnesia. Brain, 2016, 139, 3137-3150.	7.6	66
48	Kinetic analysis of the translocator protein positron emission tomography ligand [18F]GE-180 in the human brain. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 2201-2210.	6.4	70
49	Catecholamines and cognition after traumatic brain injury. Brain, 2016, 139, 2345-2371.	7.6	73
50	Amyloid pathology and axonal injury after brain trauma. Neurology, 2016, 86, 821-828.	1.1	116
51	Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage. Journal of Neuroinflammation, 2015, 12, 224.	7.2	60
52	The effect of oppositional parietal transcranial direct current stimulation on lateralized brain functions. European Journal of Neuroscience, 2015, 42, 2904-2914.	2.6	28
53	Cascades and Cognitive State: Focused Attention Incurs Subcritical Dynamics. Journal of Neuroscience, 2015, 35, 4626-4634.	3.6	71
54	Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Annals of Neurology, 2015, 77, 571-581.	5.3	349

#	Article	IF	CITATIONS
55	The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers. Cerebral Cortex, 2015, 25, 554-562.	2.9	78
56	Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain, 2015, 138, 1696-1709.	7.6	172
57	Contrasting network and modular perspectives on inhibitory control. Trends in Cognitive Sciences, 2015, 19, 445-452.	7.8	179
58	Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome. Journal of Neuroscience, 2015, 35, 9050-9063.	3.6	148
59	Concussion is confusing us all. Practical Neurology, 2015, 15, 172-186.	1.1	145
60	Spatial Dependencies between Large-Scale Brain Networks. PLoS ONE, 2014, 9, e98500.	2.5	23
61	The Control of Global Brain Dynamics: Opposing Actions of Frontoparietal Control and Default Mode Networks on Attention. Journal of Neuroscience, 2014, 34, 451-461.	3.6	174
62	The association of traumatic brain injury with rate of progression of cognitive and functional impairment in a population-based cohort of Alzheimer's disease: the Cache County dementia progression study by Gilbert <i>et al</i> . Late effects of traumatic brain injury on dementia progression. International Psychogeriatrics, 2014, 26, 1591-1592.	1.0	5
63	Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 2014, 10, 156-166.	10.1	528
64	The role of the posterior cingulate cortex in cognition and disease. Brain, 2014, 137, 12-32.	7.6	1,721
65	Damage to the Salience Network and Interactions with the Default Mode Network. Journal of Neuroscience, 2014, 34, 10798-10807.	3.6	189
66	The neural basis of impaired self-awareness after traumatic brain injury. Brain, 2014, 137, 586-597.	7.6	102
67	Parallel systems in the control of speech. Human Brain Mapping, 2014, 35, 1930-1943.	3.6	23
68	A Framework for Inter-Subject Prediction of Functional Connectivity From Structural Networks. IEEE Transactions on Medical Imaging, 2013, 32, 2200-2214.	8.9	29
69	Separable networks for top-down attention to auditory non-spatial and visuospatial modalities. Neurolmage, 2013, 74, 77-86.	4.2	56
70	Traumatic brain injury impairs small-world topology. Neurology, 2013, 80, 1826-1833.	1.1	168
71	Individual prediction of white matter injury following traumatic brain injury. Annals of Neurology, 2013, 73, 489-499.	5 . 3	79
72	Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4690-4695.	7.1	523

#	Article	IF	CITATIONS
73	How can investigation of network function inform rehabilitation after traumatic brain injury?. Current Opinion in Neurology, 2012, 25, 662-669.	3.6	54
74	Echoes of the Brain within the Posterior Cingulate Cortex. Journal of Neuroscience, 2012, 32, 215-222.	3.6	520
75	A robust method for investigating thalamic white matter tracts after traumatic brain injury. Neurolmage, 2012, 63, 779-788.	4.2	40
76	Regional changes in thalamic shape and volume with increasing age. Neurolmage, 2012, 63, 1134-1142.	4.2	100
77	White matter damage and cognitive impairment after traumatic brain injury. Brain, 2011, 134, 449-463.	7.6	541
78	Fractionating the Default Mode Network: Distinct Contributions of the Ventral and Dorsal Posterior Cingulate Cortex to Cognitive Control. Journal of Neuroscience, 2011, 31, 3217-3224.	3.6	668
79	Investigating white matter injury after mild traumatic brain injury. Current Opinion in Neurology, 2011, 24, 558-563.	3.6	117
80	Inflammation after trauma: Microglial activation and traumatic brain injury. Annals of Neurology, 2011, 70, 374-383.	5.3	803
81	Default Mode Network Connectivity Predicts Sustained Attention Deficits after Traumatic Brain Injury. Journal of Neuroscience, 2011, 31, 13442-13451.	3.6	401
82	Default mode network functional and structural connectivity after traumatic brain injury. Brain, 2011, 134, 2233-2247.	7.6	398
83	The neural response to changing semantic and perceptual complexity during language processing. Human Brain Mapping, 2010, 31, 365-377.	3.6	57
84	Increased frontoparietal integration after stroke and cognitive recovery. Annals of Neurology, 2010, 68, 753-756.	5.3	60
85	Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6106-6111.	7.1	464
86	Cognitive impairment after mild traumatic brain injuryâ€"the value of memory testing. Nature Clinical Practice Neurology, 2008, 4, 420-421.	2.5	1
87	Lexical retrieval constrained by sound structure: The role of the left inferior frontal gyrus. Brain and Language, 2005, 92, 309-319.	1.6	34
88	The Neural Correlates of Declining Performance with Age: Evidence for Age-Related Changes in Cognitive Control. Cerebral Cortex, 2005, 16, 1739-1749.	2.9	55
89	Monitoring and the Controlled Processing of Meaning: Distinct Prefrontal Systems. Cerebral Cortex, 2004, 14, 1-10.	2.9	52
90	Retrieving meaning after temporal lobe infarction: The role of the basal language area. Annals of Neurology, 2004, 56, 836-846.	5.3	151

#	Article	IF	CITATIONS
91	A Double Dissociation of Distinct Prefrontal Cortical Regions during the Perceptual Modulation of Semantic Decision-Making. Clinical Science, 2003, 104, 38P-38P.	0.0	O