Simon Escobar Steinvall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9571694/publications.pdf

Version: 2024-02-01

1163117 1199594 20 175 8 12 citations g-index h-index papers 21 21 21 228 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoscale Growth Initiation as a Pathway to Improve the Earth-Abundant Absorber Zinc Phosphide. ACS Applied Energy Materials, 2022, 5, 5298-5306.	5.1	3
2	Showcasing the optical properties of monocrystalline zinc phosphide thin films as an earth-abundant photovoltaic absorber. Materials Advances, 2022, 3, 1295-1303.	5.4	7
3	Ni ₈₀ Fe ₂₀ nanotubes with optimized spintronic functionalities prepared by atomic layer deposition. Nanoscale, 2021, 13, 13451-13462.	5.6	9
4	Optical properties and carrier dynamics in Co-doped ZnO nanorods. Nanoscale Advances, 2021, 3, 214-222.	4.6	3
5	Towards defect-free thin films of the earth-abundant absorber zinc phosphide by nanopatterning. Nanoscale Advances, 2021, 3, 326-332.	4.6	13
6	van der Waals Epitaxy of Co _{10–<i>y</i>} Mn _{<i>x</i>+<i>y</i>} Thin Films: Chemical Composition Engineering and Magnetic Properties. Journal of Physical Chemistry C, 2021, 125, 9391-9399.	3.1	1
7	The path towards 1 µm monocrystalline Zn ₃ P ₂ films on InP: substrate preparation, growth conditions and luminescence properties. JPhys Energy, 2021, 3, 034011.	5.3	8
8	Modeling the Shape Evolution of Selective Area Grown Zn ₃ P ₂ Nanoislands. Crystal Growth and Design, 2021, 21, 4732-4737.	3.0	1
9	The Advantage of Nanowire Configuration in Band Structure Determination. Advanced Functional Materials, 2021, 31, 2105426.	14.9	4
10	Raman spectroscopy and lattice dynamics calculations of tetragonally-structured single crystal zinc phosphide (Zn ₃ P ₂) nanowires. Nanotechnology, 2021, 32, 085704.	2.6	10
11	The Advantage of Nanowire Configuration in Band Structure Determination (Adv. Funct. Mater.) Tj ETQq1 1 0.784	1314 rgBT 14.9	/Qverlock 10
12	Rotated domains in selective area epitaxy grown Zn ₃ P ₂ : formation mechanism and functionality. Nanoscale, 2021, 13, 18441-18450.	5.6	7
13	Multiple morphologies and functionality of nanowires made from earth-abundant zinc phosphide. Nanoscale Horizons, 2020, 5, 274-282.	8.0	15
14	Heterotwin Zn ₃ P ₂ superlattice nanowires: the role of indium insertion in the superlattice formation mechanism and their optical properties. Nanoscale, 2020, 12, 22534-22540.	5.6	7
15	Plasma-Enhanced Atomic Layer Deposition of Nickel Nanotubes with Low Resistivity and Coherent Magnetization Dynamics for 3D Spintronics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40443-40452.	8.0	14
16	Measuring the Optical Absorption of Single Nanowires. Physical Review Applied, 2020, 14, .	3.8	19
17	van der Waals Epitaxy of Earth-Abundant Zn ₃ P ₂ on Graphene for Photovoltaics. Crystal Growth and Design, 2020, 20, 3816-3825.	3.0	24
18	Thermodynamic re-assessment of the Zn–P binary system. Materialia, 2019, 6, 100301.	2.7	13

#	Article	IF	CITATIONS
19	Segregation scheme of indium in AlGalnAs nanowire shells. Physical Review Materials, 2019, 3, .	2.4	11
20	A Comparison of Explicitlyâ€terminated Diamond Electrodes Decorated with Gold Nanoparticles. Electroanalysis, 2016, 28, 88-95.	2.9	6