Enric I. Canela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9571408/publications.pdf Version: 2024-02-01

		6613	16650
357	19,917	79	123
papers	citations	h-index	g-index
363 all docs	363 docs citations	363 times ranked	14170 citing authors

#	Article	IF	CITATIONS
1	Expression of the Adenosine A2A-A3 Receptor Heteromer in Different Brain Regions and Marked Upregulation in the Microglia of the Transgenic APPSw,Ind Alzheimer's Disease Model. Biomedicines, 2022, 10, 214.	3.2	5
2	The Binding Mode to Orthosteric Sites and/or Exosites Underlies the Therapeutic Potential of Drugs Targeting Cannabinoid CB2 Receptors. Frontiers in Pharmacology, 2022, 13, 852631.	3.5	2
3	Robustness of the Krebs Cycle under Physiological Conditions and in Cancer: New Clues for Evaluating Metabolism-Modifying Drug Therapies. Biomedicines, 2022, 10, 1199.	3.2	2
4	Nk3R blockade has sex-divergent effects on memory in mice. Biology of Sex Differences, 2022, 13, .	4.1	1
5	The Heteromeric Complex Formed by Dopamine Receptor D5 and CCR9 Leads the Gut Homing of CD4+ T Cells Upon Inflammation. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 489-506.	4.5	12
6	Dopamine in Health and Disease: Much More Than a Neurotransmitter. Biomedicines, 2021, 9, 109.	3.2	78
7	Structure and function of adenosine receptor heteromers. Cellular and Molecular Life Sciences, 2021, 78, 3957-3968.	5.4	30
8	Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: Structural and functional properties. Addiction Biology, 2021, 26, e13017.	2.6	6
9	Carnitine palmitoyltransferase 1C negatively regulates the endocannabinoid hydrolase ABHD6 in mice, depending on nutritional status. British Journal of Pharmacology, 2021, 178, 1507-1523.	5.4	11
10	Methamphetamine Blocks Adenosine A2A Receptor Activation via Sigma 1 and Cannabinoid CB1 Receptors. International Journal of Molecular Sciences, 2021, 22, 2743.	4.1	3
11	Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System—Implications for Health and Disease. International Journal of Molecular Sciences, 2021, 22, 3661.	4.1	14
12	Microglial Adenosine Receptors: From Preconditioning to Modulating the M1/M2 Balance in Activated Cells. Cells, 2021, 10, 1124.	4.1	22
13	Potent and Subtype-Selective Dopamine D ₂ Receptor Biased Partial Agonists Discovered via an Ugi-Based Approach. Journal of Medicinal Chemistry, 2021, 64, 8710-8726.	6.4	3
14	Design of Negative and Positive Allosteric Modulators of the Cannabinoid CB ₂ Receptor Derived from the Natural Product Cannabidiol. Journal of Medicinal Chemistry, 2021, 64, 9354-9364.	6.4	27
15	Identification of the Ghrelin and Cannabinoid CB2 Receptor Heteromer Functionality and Marked Upregulation in Striatal Neurons from Offspring of Mice under a High-Fat Diet. International Journal of Molecular Sciences, 2021, 22, 8928.	4.1	4
16	Heteromerization between α2A adrenoceptors and different polymorphic variants of the dopamine D4 receptor determines pharmacological and functional differences. Implications for impulsive-control disorders. Pharmacological Research, 2021, 170, 105745.	7.1	6
17	Identification of BiP as a CB ₁ Receptor-Interacting Protein That Fine-Tunes Cannabinoid Signaling in the Mouse Brain. Journal of Neuroscience, 2021, 41, 7924-7941.	3.6	14
18	Novel Interactions Involving the Mas Receptor Show Potential of the Renin–Angiotensin system in the Regulation of Microglia Activation: Altered Expression in Parkinsonism and Dyskinesia. Neurotherapeutics, 2021, 18, 998-1016.	4.4	11

#	Article	IF	CITATIONS
19	Recent Advances in the Potential of Cannabinoids for Neuroprotection in Alzheimer's, Parkinson's, and Huntington's Diseases. Advances in Experimental Medicine and Biology, 2021, 1264, 81-92.	1.6	23
20	Adenosine Receptor Antagonists to Combat Cancer and to Boost Anti-Cancer Chemotherapy and Immunotherapy. Cells, 2021, 10, 2831.	4.1	22
21	Similarities and differences upon binding of naturally occurring Δ9-tetrahydrocannabinol-derivatives to cannabinoid CB1 and CB2 receptors. Pharmacological Research, 2021, 174, 105970.	7.1	17
22	N-Methyl-D-aspartate (NMDA) and cannabinoid CB2 receptors form functional complexes in cellsÂof the central nervous system: insights into the therapeutic potential of neuronal and microglial NMDA receptors. Alzheimer's Research and Therapy, 2021, 13, 184.	6.2	14
23	Ghrelin and Cannabinoid Functional Interactions Mediated by Ghrelin/CB1 Receptor Heteromers That Are Upregulated in the Striatum From Offspring of Mice Under a High-Fat Diet. Frontiers in Cellular Neuroscience, 2021, 15, 786597.	3.7	2
24	Melatonin and the control of intraocular pressure. Progress in Retinal and Eye Research, 2020, 75, 100798.	15.5	31
25	Adreno–melatonin receptor complexes control ion homeostasis and intraocular pressure ―their disruption contributes to hypertensive glaucoma. British Journal of Pharmacology, 2020, 177, 2090-2105.	5.4	8
26	Structure of G-protein-coupled receptor heteromers. , 2020, , 109-119.		1
27	A2A and A2B adenosine receptors: The extracellular loop 2 determines high (A2A) or low affinity (A2B) for adenosine. Biochemical Pharmacology, 2020, 172, 113718.	4.4	24
28	Expression of GPR55 and either cannabinoid CB1 or CB2 heteroreceptor complexes in the caudate, putamen, and accumbens nuclei of control, parkinsonian, and dyskinetic non-human primates. Brain Structure and Function, 2020, 225, 2153-2164.	2.3	12
29	SARS-CoV-2 as a Factor to Disbalance the Renin–Angiotensin System: A Suspect in the Case of Exacerbated IL-6 Production. Journal of Immunology, 2020, 205, 1198-1206.	0.8	18
30	The Interplay between Cancer Biology and the Endocannabinoid System—Significance for Cancer Risk, Prognosis and Response to Treatment. Cancers, 2020, 12, 3275.	3.7	23
31	Adenosine A2A and A3 Receptors Are Able to Interact with Each Other. A Further Piece in the Puzzle of Adenosine Receptor-Mediated Signaling. International Journal of Molecular Sciences, 2020, 21, 5070.	4.1	14
32	Experimental and computational analysis of biased agonism on full-length and a C-terminally truncated adenosine A2A receptor. Computational and Structural Biotechnology Journal, 2020, 18, 2723-2732.	4.1	20
33	Angiotensin AT1 and AT2 receptor heteromer expression in the hemilesioned rat model of Parkinson's disease that increases with levodopa-induced dyskinesia. Journal of Neuroinflammation, 2020, 17, 243.	7.2	16
34	Functional Complexes of Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Receptors: Expression in Adult but Not Fetal Lung Tissue. International Journal of Molecular Sciences, 2020, 21, 9602.	4.1	11
35	Adenosine A2A Receptor Antagonists Affects NMDA Glutamate Receptor Function. Potential to Address Neurodegeneration in Alzheimer's Disease. Cells, 2020, 9, 1075.	4.1	36
36	Pharmacological potential of varinic-, minor-, and acidic phytocannabinoids. Pharmacological Research, 2020, 158, 104801.	7.1	30

#	Article	IF	CITATIONS
37	Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacological Research, 2020, 159, 104940.	7.1	57
38	Microbiota and Other Preventive Strategies and Non-genetic Risk Factors in Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 12.	3.4	5
39	Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metabolism, 2020, 32, 56-70.e7.	16.2	77
40	Expression of Melatonin and Dopamine D3 Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension. Cells, 2020, 9, 152.	4.1	12
41	Altered Signaling in CB1R-5-HT2AR Heteromers in Olfactory Neuroepithelium Cells of Schizophrenia Patients is Modulated by Cannabis Use. Schizophrenia Bulletin, 2020, 46, 1547-1557.	4.3	17
42	The Old and New Visions of Biased Agonism Through the Prism of Adenosine Receptor Signaling and Receptor/Receptor and Receptor/Protein Interactions. Frontiers in Pharmacology, 2020, 11, 628601.	3.5	10
43	Modulation of dopamine D1 receptors via histamine H3 receptors is a novel therapeutic target for Huntington's disease. ELife, 2020, 9, .	6.0	20
44	The Kinetic Component in Drug Discovery: Using the Most Basic Pharmacological Concepts to Advance in Selecting Drugs to Combat CNS Diseases. Current Neuropharmacology, 2020, 18, 250-257.	2.9	2
45	Cocaine Blocks Effects of Hunger Hormone, Ghrelin, Via Interaction with Neuronal Sigma-1 Receptors. Molecular Neurobiology, 2019, 56, 1196-1210.	4.0	13
46	Adenosine A1-Dopamine D1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron. Molecular Neurobiology, 2019, 56, 797-811.	4.0	36
47	Potentiation of cannabinoid signaling in microglia by adenosine A 2A receptor antagonists. Glia, 2019, 67, 2410-2423.	4.9	36
48	Lessons on Differential Neuronal-Death-Vulnerability from Familial Cases of Parkinson's and Alzheimer's Diseases. International Journal of Molecular Sciences, 2019, 20, 3297.	4.1	6
49	Biased G Protein-Independent Signaling of Dopamine D1-D3 Receptor Heteromers in the Nucleus Accumbens. Molecular Neurobiology, 2019, 56, 6756-6769.	4.0	33
50	The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet?. Frontiers in Pharmacology, 2019, 10, 339.	3.5	91
51	Therapeutic targeting of HER2–CB ₂ R heteromers in HER2-positive breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3863-3872.	7.1	40
52	Increased expression of cannabinoid CB2 and serotonin 5-HT1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage. Neuropharmacology, 2019, 152, 58-66.	4.1	25
53	Why have transgenic rodent models failed to successfully mimic Alzheimer's disease. How can we develop effective drugs without them?. Expert Opinion on Drug Discovery, 2019, 14, 327-330.	5.0	8
54	A2A Receptor Homodimer-Disrupting Sequence Efficiently Delivered by a Protease-Resistant, Cyclic CPP Vector. International Journal of Molecular Sciences, 2019, 20, 4937.	4.1	9

#	Article	IF	CITATIONS
55	Reinterpreting anomalous competitive binding experiments within G protein-coupled receptor homodimers using a dimer receptor model. Pharmacological Research, 2019, 139, 337-347.	7.1	15
56	Differential effect of amphetamine over the corticotropin-releasing factor CRF2 receptor, the orexin OX1 receptor and the CRF2-OX1 heteroreceptor complex. Neuropharmacology, 2019, 152, 102-111.	4.1	11
57	Identification of Heteroreceptors Complexes and Signal Transduction Events Using Bioluminescence Resonance Energy Transfer (BRET). Bio-protocol, 2019, 9, e3385.	0.4	1
58	Cannabis Users Show Enhanced Expression of CB1-5HT2A Receptor Heteromers in Olfactory Neuroepithelium Cells. Molecular Neurobiology, 2018, 55, 6347-6361.	4.0	34
59	α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands. Molecular Neurobiology, 2018, 55, 8438-8454.	4.0	26
60	Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum. Neuropsychopharmacology, 2018, 43, 964-977.	5.4	52
61	Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons. Molecular Neurobiology, 2018, 55, 4718-4730.	4.0	14
62	Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia. Brain, Behavior, and Immunity, 2018, 67, 139-151.	4.1	99
63	Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget, 2018, 9, 13593-13611.	1.8	77
64	Biased receptor functionality versus biased agonism in G-protein-coupled receptors. Biomolecular Concepts, 2018, 9, 143-154.	2.2	32
65	Identification of a Tool Compound to Study the Mechanisms of Functional Selectivity between D ₂ and D ₃ Dopamine Receptors. ACS Omega, 2018, 3, 17368-17375.	3.5	1
66	N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APPSw,Ind Mice. Frontiers in Molecular Neuroscience, 2018, 11, 273.	2.9	19
67	Cannabidiol skews biased agonism at cannabinoid CB1 and CB2 receptors with smaller effect in CB1-CB2 heteroreceptor complexes. Biochemical Pharmacology, 2018, 157, 148-158.	4.4	74
68	Adenosine Receptors as a Paradigm to Identify Dimer/Oligomers of G-Protein-Coupled Receptors and as Targets in Parkinson's Disease and Schizophrenia. , 2018, , 239-258.		0
69	Analysis and Quantification of GPCR Allosteric Receptor–Receptor Interactions Using Radioligand Binding Assays: The A2AR-D2R Heteroreceptor Complex Example. Neuromethods, 2018, , 1-14.	0.3	Ο
70	Methods to Identify the Signature of Trimers Formed by Three G Protein-Coupled Receptors or by Two G Protein-Coupled and One Ionotropic Receptor with Special Emphasis in the Functional Role in the Central Nervous System. Neuromethods, 2018, , 187-203.	0.3	1
71	Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins. Frontiers in Pharmacology, 2018, 9, 106.	3.5	54
72	Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes. Frontiers in Pharmacology, 2018, 9, 632.	3.5	88

#	Article	IF	CITATIONS
73	Adenosine A2A Receptor Antagonists in Neurodegenerative Diseases: Huge Potential and Huge Challenges. Frontiers in Psychiatry, 2018, 9, 68.	2.6	46
74	Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Frontiers in Synaptic Neuroscience, 2018, 10, 20.	2.5	43
75	Neuronal Calcium and cAMP Cross-Talk Mediated by Cannabinoid CB1 Receptor and EF-Hand Calcium Sensor Interactions. Frontiers in Cell and Developmental Biology, 2018, 6, 67.	3.7	13
76	Understanding the Role of Adenosine A2AR Heteroreceptor Complexes in Neurodegeneration and Neuroinflammation. Frontiers in Neuroscience, 2018, 12, 43.	2.8	44
77	Cocaine Effects on Dopaminergic Transmission Depend on a Balance between Sigma-1 and Sigma-2 Receptor Expression. Frontiers in Molecular Neuroscience, 2018, 11, 17.	2.9	17
78	Cross-communication between Gi and Gs in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain. BMC Biology, 2018, 16, 24.	3.8	70
79	Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase. Nature Communications, 2018, 9, 1242.	12.8	103
80	Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases. Biochemical Pharmacology, 2018, 157, 169-179.	4.4	47
81	Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 4537-4550.	4.0	44
82	Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer's disease. Progress in Neurobiology, 2017, 149-150, 21-38.	5.7	42
83	Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area. Journal of Neuroscience, 2017, 37, 1176-1186.	3.6	34
84	Heteroreceptor Complexes Implicated in Parkinson's Disease. , 2017, , 477-501.		1
85	Neurochemical evidence supporting dopamine D1–D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation. Brain Structure and Function, 2017, 222, 1767-1784.	2.3	58
86	Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors. Frontiers in Pharmacology, 2017, 8, 744.	3.5	134
87	The Epigenetic Cytocrin Pathway to the Nucleus. Epigenetic Factors, Epigenetic Mediators, and Epigenetic Traits. A Biochemist Perspective. Frontiers in Genetics, 2017, 8, 179.	2.3	10
88	Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes. Neural Plasticity, 2016, 2016, 1-12.	2.2	28
89	Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. Frontiers in Neuroscience, 2016, 10, 406.	2.8	108
90	Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization. Frontiers in Pharmacology, 2016, 7, 76.	3.5	98

#	Article	IF	CITATIONS
91	Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 580-587.	2.5	20
92	A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons. Journal of Biological Chemistry, 2016, 291, 13048-13062.	3.4	41
93	Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opinion on Drug Discovery, 2016, 11, 641-664.	5.0	49
94	Disruption of a dopamine receptor complex amplifies the actions of cocaine. European Neuropsychopharmacology, 2016, 26, 1366-1377.	0.7	36
95	Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biology, 2016, 14, 26.	3.8	97
96	Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease. Brain, Behavior, and Immunity, 2016, 57, 94-105.	4.1	51
97	Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology, 2016, 105, 241-257.	4.1	14
98	Hints on the Lateralization of Dopamine Binding to D1 Receptors in Rat Striatum. Molecular Neurobiology, 2016, 53, 5436-5445.	4.0	7
99	Adenosine deaminase regulates Treg expression in autologous T cell-dendritic cell cocultures from patients infected with HIV-1. Journal of Leukocyte Biology, 2016, 99, 349-359.	3.3	20
100	Purinergic signaling in Parkinson's disease. Relevance for treatment. Neuropharmacology, 2016, 104, 161-168.	4.1	68
101	Structures for G-Protein-Coupled Receptor Tetramers in Complex with G Proteins. Trends in Biochemical Sciences, 2015, 40, 548-551.	7.5	60
102	Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Structure and Function, 2015, 220, 2721-2738.	2.3	82
103	Allosteric interactions between agonists and antagonists within the adenosine A _{2A} receptor-dopamine D ₂ receptor heterotetramer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3609-18.	7.1	135
104	The relevance of theobromine for the beneficial effects of cocoa consumption. Frontiers in Pharmacology, 2015, 6, 30.	3.5	100
105	Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology, 2015, 131, 65-86.	5.7	561
106	Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine. Journal of Neuroscience, 2015, 35, 6639-6653.	3.6	66
107	Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia. Molecular Neurobiology, 2015, 52, 1408-1420.	4.0	49
108	Role of Cannabinoid Receptor CB2 in HER2 Pro-oncogenic Signaling in Breast Cancer. Journal of the National Cancer Institute, 2015, 107, djv077.	6.3	98

#	Article	IF	CITATIONS
109	Moonlighting Adenosine Deaminase: A Target Protein for Drug Development. Medicinal Research Reviews, 2015, 35, 85-125.	10.5	54
110	Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors. PLoS Biology, 2015, 13, e1002194.	5.6	157
111	Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D ₁ -D ₃ Receptor Heterotetramer. Molecular Pharmacology, 2014, 86, 417-429.	2.3	114
112	Cocaine Disrupts Histamine H ₃ Receptor Modulation of Dopamine D ₁ Receptor Signaling: σ ₁ -D ₁ -H ₃ Receptor Complexes as Key Targets for Reducing Cocaine's Effects. Journal of Neuroscience, 2014, 34, 3545-3558.	3.6	66
113	CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120 _{IIIB} binding to the cell surface. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1960-9.	7.1	45
114	Successful therapies for Alzheimerââ,¬â"¢s disease: why so many in animal models and none in humans?. Frontiers in Pharmacology, 2014, 5, 146.	3.5	138
115	Potential of caveolae in the therapy of cardiovascular and neurological diseases. Frontiers in Physiology, 2014, 5, 370.	2.8	17
116	Intracellular Calcium Levels Determine Differential Modulation of Allosteric Interactions within G Protein-Coupled Receptor Heteromers. Chemistry and Biology, 2014, 21, 1546-1556.	6.0	51
117	Gâ€Protein oupled Receptor Heteromers as Key Players in the Molecular Architecture of the Central Nervous System. CNS Neuroscience and Therapeutics, 2014, 20, 703-709.	3.9	23
118	Neuroprotective Potential of Adenosine A _{2A} and Cannabinoid CB ₁ Receptor Antagonists in an Animal Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2014, 73, 414-424.	1.7	31
119	Understanding the Added Value of G-Protein-Coupled Receptor Heteromers. Scientifica, 2014, 2014, 1-7.	1.7	6
120	l-DOPA-treatment in primates disrupts the expression of A2A adenosine–CB1 cannabinoid–D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology, 2014, 79, 90-100.	4.1	83
121	Dopamine receptor heteromeric complexes and their emerging functions. Progress in Brain Research, 2014, 211, 183-200.	1.4	38
122	Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling. Journal of Biological Chemistry, 2014, 289, 21960-21972.	3.4	95
123	l-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Experimental Neurology, 2014, 253, 180-191.	4.1	77
124	M17 Targeting Dopamine D1-histamine H3 Receptor Heteromers As A Therapeutical Strategy To Prevent Cognitive Deficits And Neurodegeneration In Huntington's Disease. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, A100-A100.	1.9	0
125	Challenges in the Development of Heteromer-GPCR-Based Drugs. Progress in Molecular Biology and Translational Science, 2013, 117, 143-162.	1.7	10
126	A1R–A2AR heteromers coupled to Gs and Gi/O proteins modulate GABA transport into astrocytes. Purinergic Signalling, 2013, 9, 433-449.	2.2	123

#	Article	IF	CITATIONS
127	CB2 receptor and amyloid pathology in frontal cortex of Alzheimer's disease patients. Neurobiology of Aging, 2013, 34, 805-808.	3.1	152
128	The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors. FASEB Journal, 2013, 27, 1048-1061.	0.5	35
129	Mechanisms of cannabidiol neuroprotection in hypoxic–ischemic newborn pigs: Role of 5HT1A and CB2 receptors. Neuropharmacology, 2013, 71, 282-291.	4.1	182
130	Homodimerization of adenosine A1 receptors in brain cortex explains the biphasic effects of caffeine. Neuropharmacology, 2013, 71, 56-69.	4.1	30
131	Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 2013, 5, 4159-4173.	4.1	155
132	Detection of Receptor Heteromers Involving Dopamine Receptors by the Sequential BRET-FRET Technology. Methods in Molecular Biology, 2013, 964, 95-105.	0.9	10
133	Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers. PLoS ONE, 2013, 8, e61245.	2.5	112
134	Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland. PLoS Biology, 2012, 10, e1001347.	5.6	132
135	Cannabinoid Receptors CB1 and CB2 Form Functional Heteromers in Brain. Journal of Biological Chemistry, 2012, 287, 20851-20865.	3.4	196
136	An old enzyme for current needs: adenosine deaminase and a dendritic cell vaccine for HIV. Immunology and Cell Biology, 2012, 90, 594-600.	2.3	7
137	Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A2A and metabotropic glutamate type 5 receptors: Focus on beta-synuclein expression. Gene, 2012, 508, 199-205.	2.2	5
138	Unmasking adenosine 2A receptors (A2ARs) in monkey basal ganglia output neurons using cholera toxin subunit B (CTB). Neurobiology of Disease, 2012, 47, 347-357.	4.4	4
139	Adenosine Deaminase Enhances the Immunogenicity of Human Dendritic Cells from Healthy and HIV-Infected Individuals. PLoS ONE, 2012, 7, e51287.	2.5	21
140	Dopamine–Galanin Receptor Heteromers Modulate Cholinergic Neurotransmission in the Rat Ventral Hippocampus. Journal of Neuroscience, 2011, 31, 7412-7423.	3.6	31
141	Biotin Ergopeptide Probes for Dopamine Receptors. Journal of Medicinal Chemistry, 2011, 54, 1080-1090.	6.4	13
142	Modulation of GABA Transport by Adenosine A1R-A2AR Heteromers, Which Are Coupled to Both Gs- and Gi/o-Proteins. Journal of Neuroscience, 2011, 31, 15629-15639.	3.6	16
143	Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics. Scientific World Journal, The, 2011, 11, 1995-2010.	2.1	2
144	A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase. Biochemical Journal, 2011, 435, 701-709.	3.7	37

#	Article	IF	CITATIONS
145	Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function. Frontiers in Neuroanatomy, 2011, 5, 36.	1.7	44
146	Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. Addiction Biology, 2011, 16, 405-415.	2.6	50
147	Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson's disease. , 2011, 132, 280-299.		170
148	Production of functional recombinant G-protein coupled receptors for heteromerization studies. Journal of Neuroscience Methods, 2011, 199, 258-264.	2.5	10
149	Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of <i>Macaca fascicularis</i> . Journal of Psychopharmacology, 2011, 25, 97-104.	4.0	120
150	Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A2A receptors. European Heart Journal, 2011, 32, 721-729.	2.2	67
151	Dopamine D1-histamine H3 Receptor Heteromers Provide a Selective Link to MAPK Signaling in GABAergic Neurons of the Direct Striatal Pathway. Journal of Biological Chemistry, 2011, 286, 5846-5854.	3.4	109
152	Striatal Pre- and Postsynaptic Profile of Adenosine A2A Receptor Antagonists. PLoS ONE, 2011, 6, e16088.	2.5	115
153	Cocaine selfâ€administration markedly increases dopamine D ₂ receptor negative cooperativity for dopamine binding: A receptor dimerâ€based analysis. Synapse, 2010, 64, 566-569.	1.2	8
154	Adenosine–cannabinoid receptor interactions. Implications for striatal function. British Journal of Pharmacology, 2010, 160, 443-453.	5.4	113
155	G _i protein coupling to adenosine A ₁ –A _{2A} receptor heteromers in human brain caudate nucleus. Journal of Neurochemistry, 2010, 114, 972-980.	3.9	14
156	A Hybrid Indoloquinolizidine Peptide as Allosteric Modulator of Dopamine D1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 876-885.	2.5	13
157	Direct involvement of Ï <i>f</i> -1 receptors in the dopamine D ₁ receptor-mediated effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18676-18681.	7.1	153
158	Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. Journal of Leukocyte Biology, 2010, 88, 279-290.	3.3	192
159	Interactions between Intracellular Domains as Key Determinants of the Quaternary Structure and Function of Receptor Heteromers. Journal of Biological Chemistry, 2010, 285, 27346-27359.	3.4	102
160	Prime Time for G-Protein-Coupled Receptor Heteromers as Therapeutic Targets for CNS disorders: The Dopamine D1-D3 Receptor Heteromer. CNS and Neurological Disorders - Drug Targets, 2010, 9, 596-600.	1.4	23
161	Platforms for the identification of GPCR targets, and of orthosteric and allosteric modulators. Expert Opinion on Drug Discovery, 2010, 5, 391-403.	5.0	6
162	Oligomerization of G-protein-coupled receptors: A reality. Current Opinion in Pharmacology, 2010, 10, 1-5.	3.5	60

#	Article	IF	CITATIONS
163	Calcium-mediated modulation of the quaternary structure and function of adenosine A2A–dopamine D2 receptor heteromers. Current Opinion in Pharmacology, 2010, 10, 67-72.	3.5	25
164	Cocaine produces D2R-mediated conformational changes in the adenosine A2AR-dopamine D2R heteromer. Biochemical and Biophysical Research Communications, 2010, 394, 988-992.	2.1	25
165	G Protein-Coupled Receptor Heteromers as New Targets for Drug Development. Progress in Molecular Biology and Translational Science, 2010, 91, 41-52.	1.7	46
166	Adenosine deaminase potentiates the generation of effector, memory, and regulatory CD4+ T cells. Journal of Leukocyte Biology, 2010, 89, 127-136.	3.3	59
167	Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors. Journal of Biological Chemistry, 2009, 284, 28058-28068.	3.4	65
168	Dynamic Regulation of CXCR1 and CXCR2 Homo- and Heterodimers. Journal of Immunology, 2009, 183, 7337-7346.	0.8	44
169	GPCR homomers and heteromers: A better choice as targets for drug development than GPCR monomers?. , 2009, 124, 248-257.		84
170	Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. Agonist–antagonist binding modulation. Biochemical Pharmacology, 2009, 78, 1456-1463.	4.4	39
171	Indoloquinolizidine–Peptide Hybrids as Multiple Agonists for D ₁ and D ₂ Dopamine Receptors. ChemMedChem, 2009, 4, 1514-1522.	3.2	16
172	Neurotransmitter receptor heteromers in neurodegenerative diseases and neural plasticity. Journal of Neural Transmission, 2009, 116, 983-987.	2.8	12
173	Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment. Psychopharmacology, 2009, 206, 313-324.	3.1	108
174	Immunological dysfunction in HIVâ€lâ€nfected individuals caused by impairment of adenosine deaminaseâ€induced costimulation of Tâ€cell activation. Immunology, 2009, 128, 393-404.	4.4	25
175	Adenosine deaminase enhances Tâ€cell response elicited by dendritic cells loaded with inactivated HIV. Immunology and Cell Biology, 2009, 87, 634-639.	2.3	26
176	Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-134.	8.0	349
177	Marked changes in signal transduction upon heteromerization of dopamine D ₁ and histamine H ₃ receptors. British Journal of Pharmacology, 2009, 157, 64-75.	5.4	138
178	Gâ€protein oupled receptor heteromers or how neurons can display differently flavoured patterns in response to the same neurotransmitter. British Journal of Pharmacology, 2009, 158, 23-31.	5.4	23
179	Metabotropic glutamate type 5, dopamine D ₂ and adenosine A _{2a} receptors form higherâ€order oligomers in living cells. Journal of Neurochemistry, 2009, 109, 1497-1507.	3.9	249
180	The association of metabotropic glutamate receptor type 5 with the neuronal Ca ²⁺ â€binding protein 2 modulates receptor function. Journal of Neurochemistry, 2009, 111, 555-567.	3.9	27

#	Article	IF	CITATIONS
181	Looking for the role of cannabinoid receptor heteromers in striatal function. Neuropharmacology, 2009, 56, 226-234.	4.1	82
182	Adenosine A _{2A} Receptor-Antagonist/Dopamine D ₂ Receptor-Agonist Bivalent Ligands as Pharmacological Tools to Detect A _{2A} -D ₂ Receptor Heteromers. Journal of Medicinal Chemistry, 2009, 52, 5590-5602.	6.4	129
183	Light resonance energy transferâ€based methods in the study of G proteinâ€coupled receptor oligomerization. BioEssays, 2008, 30, 82-89.	2.5	37
184	Gâ€proteinâ€coupled receptor heteromers: function and ligand pharmacology. British Journal of Pharmacology, 2008, 153, S90-8.	5.4	60
185	Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nature Methods, 2008, 5, 727-733.	19.0	269
186	Human adenosine deaminase as an allosteric modulator of human A ₁ adenosine receptor: abolishment of negative cooperativity for [³ H](R)â€pia binding to the caudate nucleus. Journal of Neurochemistry, 2008, 107, 161-170.	3.9	45
187	Detection of higherâ€order G proteinâ€coupled receptor oligomers by a combined BRET–BiFC technique. FEBS Letters, 2008, 582, 2979-2984.	2.8	89
188	Plasma membrane diffusion of g protein-coupled receptor oligomers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2262-2268.	4.1	41
189	Novel pharmacological targets based on receptor heteromers. Brain Research Reviews, 2008, 58, 475-482.	9.0	32
190	Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology, 2008, 54, 815-823.	4.1	154
191	Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology, 2008, 55, 190-197.	4.1	157
192	How Calmodulin Interacts with the Adenosine A _{2A} and the Dopamine D ₂ Receptors. Journal of Proteome Research, 2008, 7, 3428-3434.	3.7	42
193	Identification of Dopamine D1–D3 Receptor Heteromers. Journal of Biological Chemistry, 2008, 283, 26016-26025.	3.4	216
194	Detection of Heteromers Formed by Cannabinoid CB ₁ , Dopamine D ₂ , and Adenosine A _{2A} G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer. Scientific World Journal, The, 2008, 8, 1088-1097.	2.1	105
195	Actin-binding Protein α-Actinin-1 Interacts with the Metabotropic Glutamate Receptor Type 5b and Modulates the Cell Surface Expression and Function of the Receptor. Journal of Biological Chemistry, 2007, 282, 12143-12153.	3.4	37
196	Heteromeric Nicotinic Acetylcholine–Dopamine Autoreceptor Complexes Modulate Striatal Dopamine Release. Neuropsychopharmacology, 2007, 32, 35-42.	5.4	63
197	Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends in Neurosciences, 2007, 30, 440-446.	8.6	136
198	Adenosine receptor–dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiology and Behavior, 2007, 92, 210-217.	2.1	239

#	Article	IF	CITATIONS
199	Aspects of the general biology of adenosine A2A signaling. Progress in Neurobiology, 2007, 83, 263-276.	5.7	168
200	Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiology of Learning and Memory, 2007, 87, 42-56.	1.9	115
201	The neuronal Ca2+-binding protein 2 (NECAB2) interacts with the adenosine A2A receptor and modulates the cell surface expression and function of the receptor. Molecular and Cellular Neurosciences, 2007, 36, 1-12.	2.2	37
202	Novel Ergopeptides as Dual Ligands for Adenosine and Dopamine Receptors. Journal of Medicinal Chemistry, 2007, 50, 3062-3069.	6.4	39
203	Striatal Adenosine A2A and Cannabinoid CB1 Receptors Form Functional Heteromeric Complexes that Mediate the Motor Effects of Cannabinoids. Neuropsychopharmacology, 2007, 32, 2249-2259.	5.4	229
204	Adenosine Receptor Heteromers and their Integrative Role in Striatal Function. Scientific World Journal, The, 2007, 7, 74-85.	2.1	89
205	Basic Concepts in G-Protein-Coupled Receptor Homo- and Heterodimerization. Scientific World Journal, The, 2007, 7, 48-57.	2.1	83
206	Enzymatic and Extraenzymatic Role of Adenosine Deaminase 1 in T-Cell-Dendritic Cell Contacts and in Alterations of the Immune Function. Critical Reviews in Immunology, 2007, 27, 495-509.	0.5	53
207	Increase in A2A receptors in the nucleus accumbens after extended cocaine self-administration and its disappearance after cocaine withdrawal. Brain Research, 2007, 1143, 208-220.	2.2	52
208	Neurotransmitter receptor heteromers and their integrative role in †local modules': The striatal spine module. Brain Research Reviews, 2007, 55, 55-67.	9.0	112
209	Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: The receptor–dimer cooperativity index. , 2007, 116, 343-354.		70
210	Receptor–receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. Journal of Neural Transmission, 2007, 114, 93-104.	2.8	69
211	Allosteric Modulation of Dopamine D2Receptors by Homocysteine. Journal of Proteome Research, 2006, 5, 3077-3083.	3.7	53
212	Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Research, 2006, 1077, 67-80.	2.2	90
213	The Two-State Dimer Receptor Model: A General Model for Receptor Dimers. Molecular Pharmacology, 2006, 69, 1905-1912.	2.3	76
214	Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. Journal of Neuroscience, 2006, 26, 2080-2087.	3.6	553
215	Trafficking of Adenosine A _{2A} and Dopamine D ₂ Receptors. Journal of Molecular Neuroscience, 2005, 25, 191-200.	2.3	42
216	Role of Electrostatic Interaction in Receptor–Receptor Heteromerization. Journal of Molecular Neuroscience, 2005, 26, 125-132.	2.3	74

#	Article	IF	CITATIONS
217	Adenosine A _{2A} and Dopamine D ₂ Heteromeric Receptor Complexes and Their Function. Journal of Molecular Neuroscience, 2005, 26, 209-220.	2.3	207
218	Partners for Adenosine A ₁ Receptors. Journal of Molecular Neuroscience, 2005, 26, 221-232.	2.3	25
219	Heptaspanning Membrane Receptors and Cytoskeletal/Scaffolding Proteins: Focus on Adenosine, Dopamine, and Metabotropic Glutamate Receptor Function. Journal of Molecular Neuroscience, 2005, 26, 277-292.	2.3	25
220	Existence and Theoretical Aspects of Homomeric and Heteromeric Dopamine Receptor Complexes and Their Relevance for Neurological Diseases. NeuroMolecular Medicine, 2005, 7, 061-078.	3.4	21
221	Molecular mechanisms involved in the adenosine A1 and A2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. Journal of Neurochemistry, 2005, 92, 337-348.	3.9	56
222	Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. Journal of Neurochemistry, 2005, 95, 919-929.	3.9	140
223	Dimer-based model for heptaspanning membrane receptors. Trends in Biochemical Sciences, 2005, 30, 360-366.	7.5	60
224	ROLE OF ADENOSINE IN THE CONTROL OF HOMOSYNAPTIC PLASTICITY IN STRIATAL EXCITATORY SYNAPSES. Journal of Integrative Neuroscience, 2005, 04, 445-464.	1.7	45
225	Adenosine A2A Receptor and Dopamine D3 Receptor Interactions: Evidence of Functional A2A/D3 Heteromeric Complexes. Molecular Pharmacology, 2005, 67, 400-407.	2.3	119
226	New Methods to Evaluate Colocalization of Fluorophores in Immunocytochemical Preparations as Exemplified by a Study on A2A and D2 Receptors in Chinese Hamster Ovary Cells. Journal of Histochemistry and Cytochemistry, 2005, 53, 941-953.	2.5	43
227	OnÂtheÂNestedÂHierarchicalÂOrganizationÂofÂCNS: Basic Characteristics of Neuronal Molecular Networks. Lecture Notes in Computer Science, 2004, , 24-54.	1.3	21
228	Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-d-aspartate receptor stimulation. Journal of Neurochemistry, 2004, 91, 873-880.	3.9	107
229	On the Molecular Basis of the Receptor Mosaic Hypothesis of the Engram. Cellular and Molecular Neurobiology, 2004, 24, 501-516.	3.3	30
230	Combining Mass Spectrometry and Pull-Down Techniques for the Study of Receptor Heteromerization. Direct Epitopeâ^'Epitope Electrostatic Interactions between Adenosine A2Aand Dopamine D2Receptors. Analytical Chemistry, 2004, 76, 5354-5363.	6.5	195
231	Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson's disease. Brain Research Bulletin, 2004, 64, 155-164.	3.0	32
232	Adenosine A2A-dopamine D2 receptor–receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism and Related Disorders, 2004, 10, 265-271.	2.2	132
233	Mutual regulation between metabotropic glutamate type 11±Åreceptor and caveolin proteins: from traffick to constitutive activity. Experimental Cell Research, 2004, 300, 23-34.	2.6	26
234	Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends in Biochemical Sciences, 2003, 28, 238-243.	7.5	74

#	Article	IF	CITATIONS
235	Metabotropic glutamate type 1α receptor localizes in low-density caveolin-rich plasma membrane fractions. Journal of Neurochemistry, 2003, 86, 785-791.	3.9	31
236	Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. Journal of Neurochemistry, 2003, 88, 726-734.	3.9	139
237	Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Experimental Cell Research, 2003, 285, 72-90.	2.6	65
238	Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization. Journal of Biological Chemistry, 2003, 278, 46741-46749.	3.4	401
239	Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons. Pharmacological Reviews, 2003, 55, 509-550.	16.0	306
240	The Adenosine A2A Receptor Interacts with the Actin-binding Protein α-Actinin. Journal of Biological Chemistry, 2003, 278, 37545-37552.	3.4	100
241	Glutamate mGlu5-Adenosine A2A-Dopamine D2 Receptor Interactions in the Striatum. Implications for Drug Therapy in Neuro-psychiatric Disorders and Drug Abuse. Current Medicinal Chemistry - Central Nervous System Agents, 2003, 3, 1-26.	0.5	18
242	A ₁ Adenosine Receptors Accumulate in Neurodegenerative Structures in Alzheimer's Disease and Mediate Both Amyloid Precursor Protein Processing and Tau Phosphorylation and Translocation. Brain Pathology, 2003, 13, 440-451.	4.1	150
243	Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2Receptors. Journal of Biological Chemistry, 2002, 277, 18091-18097.	3.4	450
244	Synergistic interaction between adenosine A2A and glutamate mClu5 receptors: Implications for striatal neuronal function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11940-11945.	7.1	345
245	Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase‒CD26 interaction. Biochemical Journal, 2002, 361, 203.	3.7	34
246	Adenosine A1 Receptor in Cultured Neurons from Rat Cerebral Cortex. Journal of Neurochemistry, 2002, 75, 656-664.	3.9	43
247	Modulation of GH4 Cell Cycle via A1 Adenosine Receptors. Journal of Neurochemistry, 2002, 69, 2145-2154.	3.9	8
248	Regulation of L-Type Calcium Channels in GH4 Cells via A1 Adenosine Receptors. Journal of Neurochemistry, 2002, 69, 2546-2554.	3.9	19
249	Involvement of Caveolin in Ligand-Induced Recruitment and Internalization of A ₁ Adenosine Receptor and Adenosine Deaminase in an Epithelial Cell Line. Molecular Pharmacology, 2001, 59, 1314-1323.	2.3	84
250	Adenosine/dopamine receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 296-302.	2.9	11
251	Adenosine-glutamate receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 316-322.	2.9	4
252	Metabotropic Glutamate 1α and Adenosine A1 Receptors Assemble into Functionally Interacting Complexes. Journal of Biological Chemistry, 2001, 276, 18345-18351.	3.4	170

#	Article	IF	CITATIONS
253	Comodulation of CXCR4 and CD26 in Human Lymphocytes. Journal of Biological Chemistry, 2001, 276, 19532-19539.	3.4	89
254	Evidence for Adenosine/Dopamine Receptor Interactions Indications for Heteromerization. Neuropsychopharmacology, 2000, 23, S50-S59.	5.4	147
255	Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8606-8611.	7.1	419
256	The Heat Shock Cognate Protein hsc73 Assembles with A 1 Adenosine Receptors To Form Functional Modules in the Cell Membrane. Molecular and Cellular Biology, 2000, 20, 5164-5174.	2.3	62
257	The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Letters, 2000, 477, 123-128.	2.8	32
258	Glycogen Structure: an Evolutionary View. , 2000, , 319-326.		2
259	Epidermal growth factor (EGF)-induced up-regulation and agonist- and antagonist-induced desensitization and internalization of A1 adenosine receptors in a pituitary-derived cell line. Brain Research, 1999, 816, 47-57.	2.2	29
260	The Fractal Structure of Glycogen: A Clever Solution to Optimize Cell Metabolism. Biophysical Journal, 1999, 77, 1327-1332.	0.5	86
261	Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunological Reviews, 1998, 161, 27-42.	6.0	158
262	Ecto-adenosine deaminase: An ecto-enzyme and a costimulatory protein acting on a variety of cell surface receptors. , 1998, 45, 261-268.		12
263	Ecto-ADA in the development of theimmune system. Trends in Immunology, 1998, 19, 533.	7.5	10
264	Adenosine Deaminase and A1 Adenosine Receptors Internalize Together following Agonist-induced Receptor Desensitization. Journal of Biological Chemistry, 1998, 273, 17610-17617.	3.4	93
265	Ligand-Induced Phosphorylation, Clustering, and Desensitization of A ₁ Adenosine Receptors. Molecular Pharmacology, 1997, 52, 788-797.	2.3	80
266	Cell surface adenosine deaminase: Much more than an ectoenzyme. Progress in Neurobiology, 1997, 52, 283-294.	5.7	224
267	Calcium mobilization in Jurkat cells via A2b adenosine receptors. British Journal of Pharmacology, 1997, 122, 1075-1082.	5.4	57
268	Ammonium toxicity in different cell lines. , 1997, 56, 530-537.		19
269	The Cluster-Arranged Cooperative Model: A Model That Accounts for the Kinetics of Binding to A1Adenosine Receptorsâ€. Biochemistry, 1996, 35, 3007-3015.	2.5	38
270	Adenosine deaminase affects ligandâ€induced signalling by interacting with cell surface adenosine receptors. FEBS Letters, 1996, 380, 219-223.	2.8	150

#	Article	IF	CITATIONS
271	Molecular Bureaucracy: Who Controls the Delays?. Journal of Theoretical Biology, 1996, 182, 333-339.	1.7	6
272	Adenosine Deaminase Interacts with A ₁ Adenosine Receptors in Pig Brain Cortical Membranes. Journal of Neurochemistry, 1996, 66, 1675-1682.	3.9	58
273	Immunological identification of A1adenosine receptors in brain cortex. Journal of Neuroscience Research, 1995, 42, 818-828.	2.9	121
274	A model of the pentose phosphate pathway in rat liver cells. Molecular and Cellular Biochemistry, 1995, 142, 9-17.	3.1	41
275	Surface adenosine deaminase. Human Immunology, 1995, 42, 265-273.	2.4	16
276	A1 Adenosine receptors can occur manifesting two kinetic components of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX) binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 485-491.	3.0	2
277	Solubilization and molecular characterization of the nitrobenzylthioinosine binding sites from pig kidney brush-border membranes. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1191, 94-102.	2.6	9
278	Enzyme-enzyme interactions and metabolite channelling: alternative mechanisms and their evolutionary significance. Biochemical Journal, 1994, 298, 313-320.	3.7	25
279	Metabolic Pathway Characterization from Transient Response Data Obtained In Situ: Parameter Estimation in S-system Models. Journal of Theoretical Biology, 1993, 162, 81-102.	1.7	20
280	Adenine nucleotides and adenosine metabolism in pig kidney proximal tubule membranes. Journal of Cellular Physiology, 1993, 157, 77-83.	4.1	12
281	Role of Histidine Residues in Agonist and Antagonist Binding Sites of A1Adenosine Receptor. Journal of Neurochemistry, 1993, 60, 1525-1533.	3.9	10
282	Experimental Strategy to Study the pH Dependence of the Kinetic Behavior of Enzymes: Practical Application to Chicken Liver Xanthine Dehydrogenase. Archives of Biochemistry and Biophysics, 1993, 300, 42-48.	3.0	0
283	Analysis of ultradian heat production and aortic core temperature rhythms in the rat. Archives Internationales De Physiologie, De Biochimie Et De Biophysique, 1993, 101, 117-122.	0.1	2
284	Optimal association-saturation procedure for estimating association and dissociation rate parameters in receptAr studies. Application to solubilized A1 adenosine receptors. Biochemical Journal, 1992, 281, 477-483.	3.7	6
285	A model for adenosine transport and metabolism. Biochemical Journal, 1992, 287, 461-472.	3.7	9
286	Graphical analysis of data from pharmacology experiments. Pharmacological Research, 1992, 25, 325-334.	7.1	0
287	Characterization of adenosine receptors in brushâ€border membranes from pig kidney. British Journal of Pharmacology, 1992, 107, 671-678.	5.4	23
288	The distribution of A1 adenosine receptor and 5?-nucleotidase in pig brain cortex subcellular fractions. Neurochemical Research, 1992, 17, 129-139.	3.3	10

#	Article	IF	CITATIONS
289	The molybdoenzymes xanthine oxidase and aldehyde oxidase contain fast- and slow-DTNB reacting sulphydryl groups. The Protein Journal, 1992, 11, 547-551.	1.1	2
290	The Adenosine Receptors Present on the Plasma Membrane of Chromaffin Cells Are of the A2bSubtype. Journal of Neurochemistry, 1992, 59, 425-431.	3.9	32
291	Modulation of adenosine agonist [3H]N6-(R)-phenylisopropyladenosine binding to pig brain cortical membranes by changes of membrane fluidity and of medium physicochemical characteristics. European Journal of Pharmacology, 1992, 225, 7-14.	2.6	15
292	N-ethylmaleimide affects agonist binding to A1adenosine receptors differently in the presence than in the absence of ligand. Biochemical and Biophysical Research Communications, 1991, 181, 213-218.	2.1	9
293	The binding of [3H]R-PIA to A1adenosine receptors produces a conversion of the high- to the low-affinity state. FEBS Letters, 1991, 286, 221-224.	2.8	14
294	An Improved Purification Procedure for Sulfite Oxidase from Bovine Liver. Preparative Biochemistry and Biotechnology, 1991, 21, 53-61.	0.5	2
295	Fitting integrated enzyme rate equations to progress curves with the use of a weighting matrix. Biochemical Journal, 1991, 274, 509-511.	3.7	6
296	Adenosine (Ado) uptake in brush-border membrane vesicles from rat kidney (BBM). Biochemical Society Transactions, 1991, 19, 323S-323S.	3.4	2
297	New possibilities in the therapy of immunodeficiency diseases. Immunology Letters, 1991, 29, 277-279.	2.5	0
298	Adenosine Receptors in Myelin Fractions and Subtractions: The Effect of the Agonist (R)-Phenylisopropyladenosine on Myelin Membrane Microviscosity. Journal of Neurochemistry, 1991, 57, 1623-1629.	3.9	15
299	Effect of phospholipases and proteases on the [3H]N6-(R)-phenylisopropyladenosine ([3H]R-PIA) binding to A1 adenosine receptors from pig cerebral cortex. Journal of Cellular Biochemistry, 1991, 47, 278-288.	2.6	13
300	A new strategy for the evaluation of force parameters from quantum mechanical computations. Journal of Computational Chemistry, 1991, 12, 664-674.	3.3	39
301	Biochemical systems theory: Increasing predictive power by using second-order derivatives measurements. Journal of Theoretical Biology, 1991, 149, 521-535.	1.7	12
302	Control analysis of transition times. Molecular and Cellular Biochemistry, 1991, 101, 83-91.	3.1	11
303	Effect of Endogenous Phospholipids on the [³ H]R-Pia Binding to A ₁ Adenosine Receptors from PIG Cerebral Cortex. Nucleosides & Nucleotides, 1991, 10, 1141-1143.	0.5	3
304	Distribution of A1-adenosine receptors, adenosine deaminase and 5â€2-nucleotidase in brain and other tissues of the pig. Biochemical Society Transactions, 1990, 18, 639-641.	3.4	2
305	Preparative purification of adenosine deaminase from human erythrocytes by affinity chromatography. Biomedical Applications, 1990, 532, 75-85.	1.7	8
306	A quantum chemical study of the enzymatic deamination of benzoadenine derivatives. A theoretical model of the interactions occurring between nucleosides and the active site of adenosine deaminase. FEBS Journal, 1990, 188, 155-163.	0.2	19

#	Article	IF	CITATIONS
307	Control analysis of systems having two steps catalyzed by the same protein molecule in unbranched chains. FEBS Journal, 1990, 192, 369-371.	0.2	12
308	Occurrence and comparison of sulfite oxidase activity in mammalian tissues. Biochemical Medicine and Metabolic Biology, 1990, 43, 159-162.	0.7	33
309	Adenosine metabolism in kidney slices under normoxic conditions. Journal of Cellular Physiology, 1990, 143, 344-351.	4.1	5
310	Quantum Chemical Study of the Electronic and Conformational Characteristics of Adenosine and 8-Substituted Derivatives: Functional Implications in the Mechanism of Reaction of Adenosine Deaminase. Journal of Pharmaceutical Sciences, 1990, 79, 133-137.	3.3	10
311	Solubilization of A1adenosine receptor from pig brain: Characterization and evidence of the role of the coexistence of high- and low-affinity states. Journal of Neuroscience Research, 1990, 26, 461-473.	2.9	64
312	Discrete design of enzyme kinetic experiments. International Journal of Bio-medical Computing, 1990, 25, 7-20.	0.5	9
313	A method for binding parameters estimation of A1 adenosine receptor subtype: A practical approach. Analytical Biochemistry, 1990, 184, 117-123.	2.4	18
314	Theoretical study of the acidic strength of amino acid side chains. Bioorganic Chemistry, 1990, 18, 361-372.	4.1	2
315	Purification of Adenosine Deaminase from Chicken-Egg Yolk by Affinity Column Chromatography. Preparative Biochemistry and Biotechnology, 1990, 20, 199-204.	0.5	1
316	A Sensitive Enzymatic Method of Sulfite Determination. Analytical Letters, 1990, 23, 23-30.	1.8	10
317	Theoretical study of the hydroxyl nucleophilic attack on the 6-aminopyrimidine molecule: functional implications in the reaction mechanism of nucleoside deaminative enzymes. Journal of Organic Chemistry, 1990, 55, 2630-2637.	3.2	15
318	Ab initio study of the protonation and the tautomerism of the 7-aminopyrazolopyrimidine molecule. Journal of Organic Chemistry, 1990, 55, 753-756.	3.2	9
319	Determination of the conformational preferences of adenosine at the active site of adenosine deaminase. Journal of the American Chemical Society, 1990, 112, 8221-8229.	13.7	14
320	Further characterization of adenosine transport in renal brush-border membranes. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1024, 241-248.	2.6	29
321	Application of inverse regression for estimating molecular masses and Stokes radii of globular proteins by gel filtration chromatography. Journal of Proteomics, 1990, 20, 123-135.	2.4	2
322	Practical Determination of Control Coefficients in Metabolic Pathways. , 1990, , 157-169.		2
323	Performance Indices in Metabolic Systems: a Criterion for Evaluating Effectiveness in Metabolic Regulation. , 1990, , 149-156.		0
324	Theoretical Approximation to the Reaction Mechanism of Adenosine Deaminase. QSAR and Combinatorial Science, 1989, 8, 109-114.	1.2	9

#	Article	IF	CITATIONS
325	Interdependence between cooperativity and control coefficients. BioSystems, 1989, 23, 7-14.	2.0	4
326	Accuracy and precision in the determination of stokes radii and molecular masses of proteins by gel filtration chromatography. Journal of Chromatography A, 1989, 472, 347-356.	3.7	25
327	Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. unbranched pathways. Mathematical Biosciences, 1989, 94, 271-288.	1.9	74
328	Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. complex systems. Mathematical Biosciences, 1989, 94, 289-309.	1.9	79
329	Theoretical study of the protonation and tautomerization of adenosine, formycin, and their 2-NH2 and 2-F derivatives: functional implications in the mechanism of reaction of adenosine deaminase. Molecular Pharmacology, 1989, 35, 257-64.	2.3	26
330	Identification and rejection of outliers in enzyme kinetics. International Journal of Bio-medical Computing, 1988, 23, 9-20.	0.5	23
331	Kinetic mechanism of chicken liver xanthine dehydrogenase. Biochemical Journal, 1988, 249, 171-178.	3.7	10
332	The effects of pH on chicken liver xanthine dehydrogenase. Biochemical Society Transactions, 1987, 15, 510-511.	3.4	0
333	Purification properties and functional groups of bovine liver xanthine oxidase. Biochemical Society Transactions, 1987, 15, 511-512.	3.4	3
334	Purification and properties of bovine liver aldehyde oxidase. Biochemical Society Transactions, 1987, 15, 882-883.	3.4	2
335	The influence of ammonium ions on the aggregation of chicken liver xanthine dehydrogenase. Biochemical Society Transactions, 1987, 15, 883-884.	3.4	0
336	Simulation of the purine nucleotide cycle as an anaplerotic process in skeletal muscle. Archives of Biochemistry and Biophysics, 1987, 254, 142-155.	3.0	14
337	Distribution of adenosine deaminase in some rat tissues. Inhibition by ethanol and dimethyl sulfoxide. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 86, 95-98.	0.2	4
338	Enzyme kinetic studies from progress curves. Biochemical Journal, 1986, 233, 599-605.	3.7	16
339	A computer program for enzyme kinetics that combines model discrimination, parameter refinement and sequential experimental design. Biochemical Journal, 1986, 238, 855-862.	3.7	18
340	Enzymes of the purine metabolism in rat brain microsomes. Neurochemical Research, 1986, 11, 407-422.	3.3	7
341	Heterogeneous localization of some purine enzymes in subcellular fractions of rat brain and cerebellum. Neurochemical Research, 1986, 11, 423-435.	3.3	65
342	Kinetics of the 5?-nucleotidase and the adenosine deaminase in subcellular fractions of rat brain. Neurochemical Research, 1986, 11, 471-479.	3.3	14

#	Article	IF	CITATIONS
343	An Improved Method for the Preparation of Rat Brain Microsomes. Biological Chemistry Hoppe-Seyler, 1986, 367, 307-312.	1.4	0
344	SIMCODE: A program for simulating point mutations in genomic DNA. Biochemical Education, 1985, 13, 66-67.	0.1	0
345	Functional groups and quaternary structure of chicken liver xanthine dehydrogenase. The Protein Journal, 1985, 4, 305-317.	1.1	4
346	A microcomputer method for designing optimal experiments for estimating enzyme kinetic parameters. International Journal of Bio-medical Computing, 1985, 16, 257-266.	0.5	6
347	Computer-based learning of cooperativity and allostery. Bioinformatics, 1985, 1, 161-165.	4.1	0
348	Computer simulation of purine metabolism. FEBS Journal, 1984, 144, 305-315.	0.2	29
349	A free derivate program for non-linear regression analysis of enzyme kinetics to be used on small computers. International Journal of Bio-medical Computing, 1984, 15, 121-130.	0.5	57
350	A program for the numerical integration of enzyme kinetic equations using small computers. International Journal of Bio-medical Computing, 1984, 15, 419-432.	0.5	15
351	A program for deriving rate equations using small computers. International Journal of Bio-medical Computing, 1983, 14, 43-52.	0.5	11
352	Characterization of the forms of bovine liver adenosine deaminase. International Journal of Biochemistry & Cell Biology, 1982, 14, 679-683.	0.5	10
353	Characterization of bovine liver guanine aminohydrolase. International Journal of Biochemistry & Cell Biology, 1981, 13, 773-776.	0.5	6
354	The course analysis of guanine and hypoxanthine transformation to uric acid by bovine liver guanine aminihydrolase and xanthine oxidase. Journal of Molecular Catalysis, 1981, 12, 27-36.	1.2	7
355	Comparison of the kinetic behaviour of xanthine oxidase and xanthine dehydrogenase. Journal of Molecular Catalysis, 1981, 10, 195-201.	1.2	1
356	Chicken liver xanthine dehydrogenase kinetic behaviour with oxygen or NAD+ as electron acceptors. Journal of Molecular Catalysis, 1980, 8, 401-409.	1.2	5
357	Uric acid as electron acceptor of liver xanthine dehydrogenase. Journal of Molecular Catalysis, 1979, 6, 153-162.	1.2	5