Kenneth H Wolfe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9571299/publications.pdf

Version: 2024-02-01

84 papers 9,769 citations

43 h-index 80 g-index

94 all docs 94 docs citations 94 times ranked 9065 citing authors

#	Article	IF	CITATIONS
1	Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 1997, 387, 708-713.	27.8	1,702
2	Yesterday's polyploids and the mystery of diploidization. Nature Reviews Genetics, 2001, 2, 333-341.	16.3	658
3	The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 2005, 15, 1456-1461.	5.5	633
4	RNAi in Budding Yeast. Science, 2009, 326, 544-550.	12.6	480
5	Many Parallel Losses of infA from Chloroplast DNA during Angiosperm Evolution with Multiple Independent Transfers to the Nucleus. Plant Cell, 2001, 13, 645-658.	6.6	415
6	Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature, 2006, 440, 341-345.	27.8	411
7	Consequences of genome duplication. Current Opinion in Genetics and Development, 2007, 17, 505-512.	3.3	384
8	Comparative genomics of biotechnologically important yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9882-9887.	7.1	302
9	Base Composition Skews, Replication Orientation, and Gene Orientation in 12 Prokaryote Genomes. Journal of Molecular Evolution, 1998, 47, 691-696.	1.8	262
10	Relationship of codon bias to mRNA concentration and protein length inSaccharomyces cerevisiae. Yeast, 2000, 16, 1131-1145.	1.7	246
11	Evolution of the MAT locus and its Ho endonuclease in yeast species. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1632-1637.	7.1	217
12	Additions, Losses, and Rearrangements on the Evolutionary Route from a Reconstructed Ancestor to the Modern Saccharomyces cerevisiae Genome. PLoS Genetics, 2009, 5, e1000485.	3.5	213
13	Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8397-8402.	7.1	210
14	Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nature Genetics, 2005, 37, 777-782.	21.4	202
15	Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names. PLoS Pathogens, 2018, 14, e1007138.	4.7	144
16	The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis. PLoS Genetics, 2015, 11, e1005626.	3.5	139
17	Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20024-20029.	7.1	137
18	Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. Nucleic Acids Research, 1999, 27, 1642-1649.	14.5	130

#	Article	IF	CITATIONS
19	Gene Duplication and Gene Conversion in the Caenorhabditis elegans Genome. Journal of Molecular Evolution, 1999, 48, 555-564.	1.8	127
20	Multiple Origins of the Pathogenic Yeast Candida orthopsilosis by Separate Hybridizations between Two Parental Species. PLoS Genetics, 2016, 12, e1006404.	3.5	125
21	Origin of the Yeast Whole-Genome Duplication. PLoS Biology, 2015, 13, e1002221.	5.6	123
22	Molecular evolution meets the genomics revolution. Nature Genetics, 2003, 33, 255-265.	21.4	120
23	Comparative Genome Analysis and Gene Finding in Candida Species Using CGOB. Molecular Biology and Evolution, 2013, 30, 1281-1291.	8.9	115
24	Yeast genome evolutionâ€"the origin of the species. Yeast, 2007, 24, 929-942.	1.7	114
25	Mechanisms of Chromosome Number Evolution in Yeast. PLoS Genetics, 2011, 7, e1002190.	3.5	114
26	Evidence for a High Frequency of Simultaneous Double-Nucleotide Substitutions. Science, 2000, 287, 1283-1286.	12.6	111
27	Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi., 1998, 14, 443-457.		101
28	Recent allopolyploid origin of <i>Zygosaccharomyces rouxii</i> strain ATCC 42981. Yeast, 2008, 25, 449-456.	1.7	89
29	A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach. BMC Bioinformatics, 2012, 13, 237.	2.6	86
30	Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch. PLoS Biology, 2017, 15, e2002128.	5.6	84
31	Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus <i>Saccharomyces cerevisiae</i> system. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4851-8.	7.1	76
32	An Evolutionary Perspective on Yeast Mating-Type Switching. Genetics, 2017, 206, 9-32.	2.9	72
33	Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-dairy Isolates. Frontiers in Genetics, 2018, 9, 94.	2.3	71
34	Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nature Communications, 2018, 9, 1887.	12.8	70
35	Sequence and Analysis of the Genome of the Pathogenic Yeast Candida orthopsilosis. PLoS ONE, 2012, 7, e35750.	2.5	69
36	A Genome Sequence Survey Shows that the Pathogenic Yeast Candida parapsilosis Has a Defective MTL a 1 Allele at Its Mating Type Locus. Eukaryotic Cell, 2005, 4, 1009-1017.	3.4	64

#	Article	IF	Citations
37	Evolutionary Capture of Viral and Plasmid DNA by Yeast Nuclear Chromosomes. Eukaryotic Cell, 2009, 8, 1521-1531.	3.4	64
38	Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution. PLoS Genetics, 2014, 10, e1004076.	3.5	63
39	Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. Nucleic Acids Research, 2006, 34, 2472-2481.	14.5	62
40	Chromosomal G + C Content Evolution in Yeasts: Systematic Interspecies Differences, and GC-Poor Troughs at Centromeres. Genome Biology and Evolution, 2010, 2, 572-583.	2.5	62
41	Visualizing syntenic relationships among the hemiascomycetes with the Yeast Gene Order Browser. Nucleic Acids Research, 2006, 34, D452-D455.	14.5	60
42	Comparative genomics and genome evolution in yeasts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 403-412.	4.0	60
43	The 2R hypothesis and the human genome sequence. Journal of Structural and Functional Genomics, 2003, 3, 95-110.	1.2	59
44	Clade- and species-specific features of genome evolution in the Saccharomycetaceae. FEMS Yeast Research, 2015, 15, fov035.	2.3	58
45	Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres. Current Biology, 2015, 25, 2026-2033.	3.9	45
46	A Subset of Conserved tRNA Genes in Plastid DNA of Nongreen Plants. Genetics, 1998, 150, 425-433.	2.9	45
47	Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains. FEMS Yeast Research, 2015, 15, .	2.3	41
48	Origin of Lactose Fermentation inÂKluyveromyces lactisÂby Interspecies TransferÂof a Neo-functionalized Gene Cluster during Domestication. Current Biology, 2019, 29, 4284-4290.e2.	3.9	41
49	Zygosaccharomyces pseudobailii, another yeast interspecies hybrid that regained fertility by damaging one of its MAT loci. FEMS Yeast Research, 2018, 18, .	2.3	39
50	Centromeres of the Yeast <i>Komagataella phaffii</i> (<i>Pichia pastoris)</i> Have a Simple Inverted-Repeat Structure. Genome Biology and Evolution, 2016, 8, 2482-2492.	2.5	36
51	Multiple Reinventions of Mating-type Switching during Budding Yeast Evolution. Current Biology, 2019, 29, 2555-2562.e8.	3.9	33
52	II. Yeast sequencing reports. Sequence around the centromere of Saccharomyces cerevisiae chromosome II: Similarity of CEN2 to CEN4. Yeast, 1994, 10, S41-S46.	1.7	29
53	TPP riboswitch-dependent regulation of an ancient thiamin transporter in Candida. PLoS Genetics, 2018, 14, e1007429.	3.5	29
54	The CYPome of the model xenobiotic-biotransforming fungus Cunninghamella elegans. Scientific Reports, 2019, 9, 9240.	3.3	28

#	Article	IF	Citations
55	Coverage-Versus-Length Plots, a Simple Quality Control Step for <i>de Novo</i> Yeast Genome Sequence Assemblies. G3: Genes, Genomes, Genetics, 2019, 9, 879-887.	1.8	26
56	Evolution of Mating in the Saccharomycotina. Annual Review of Microbiology, 2017, 71, 197-214.	7.3	22
57	Polymorphic centromere locations in the pathogenic yeast <i>Candida parapsilosis</i> . Genome Research, 2020, 30, 684-696.	5.5	22
58	Elaboration, Diversification and Regulation of the Sir1 Family of Silencing Proteins in Saccharomyces. Genetics, 2009, 181, 1477-1491.	2.9	20
59	Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii. Applied and Environmental Microbiology, 2018, 84, .	3.1	18
60	Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments. BMC Genomics, 2011, 12, 377.	2.8	17
61	EvoChromo: towards a synthesis of chromatin biology and evolution. Development (Cambridge), 2019, 146, .	2.5	16
62	Genomic diversity and meiotic recombination among isolates of the biotech yeast Komagataella phaffii (Pichia pastoris). Microbial Cell Factories, 2019, 18, 211.	4.0	16
63	The yeast mating-type switching endonuclease HO is a domesticated member of an unorthodox homing genetic element family. ELife, 2020, 9, .	6.0	15
64	Draft Genome Sequence of a Highly Heterozygous Yeast Strain from the Metschnikowia pulcherrima Subclade, UCD127. Genome Announcements, 2018, 6, .	0.8	14
65	Flip/flop mating-type switching in the methylotrophic yeast Ogataea polymorpha is regulated by an Efg1-Rme1-Ste12 pathway. PLoS Genetics, 2017, 13, e1007092.	3.5	13
66	Function and Evolution of HO and VDE Endonucleases in Fungi. , 2005, , 161-175.		12
67	Sequence of 29 kb around the PDR10 locus on the right arm of Saccharomyces cerevisiae chromosome XV: Similarity to part of chromosome I. Yeast, 1996, 12, 999-1004.	1.7	10
68	Giant <i>GAL</i> gene clusters for the melibioseâ€galactose pathway in <i>Torulaspora</i> Yeast, 2021, 38, 117-126.	1.7	10
69	The Methylotroph Gene Order Browser (MGOB) reveals conserved synteny and ancestral centromere locations in the yeast family Pichiaceae. FEMS Yeast Research, 2019, 19, .	2.3	8
70	The reported point centromeres of <i>Scheffersomyces stipitis</i> are retrotransposon long terminal repeats. Yeast, 2019, 36, 275-283.	1.7	7
71	Draft Genome Sequences of Two Isolates of the Yeast Kazachstania servazzii Recovered from Soil in Ireland. Microbiology Resource Announcements, 2019, 8, .	0.6	7
72	Genome Sequences of Saccharomycotina. , 2011, , 145-157.		5

#	Article	IF	CITATIONS
73	Draft Genome Sequence of the Yeast Nadsonia starkeyi-henricii UCD142, Isolated from Forest Soil in Ireland. Genome Announcements, 2018, 6, .	0.8	5
74	Genome Sequence of Torulaspora microellipsoides CLIB 830 $<\!$ sup>T $<\!$ /sup>. Genome Announcements, 2018, 6, .	0.8	5
75	Carbon source requirements for mating and matingâ€ŧype switching in the methylotrophic yeasts <i>Ogataea (Hansenula) polymorpha</i> and <i>Komagataella phaffii (Pichia pastoris)</i> Yeast, 2020, 37, 237-245.	1.7	5
76	Draft Genome Sequence of the Birch Tree Fungal Pathogen Taphrina betulina UCD315. Microbiology Resource Announcements, 2019, 8, .	0.6	4
77	Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms. Microbiology and Molecular Biology Reviews, 2022, 86, e0000721.	6.6	4
78	Genomic diversity, chromosomal rearrangements, and interspecies hybridization in the Ogataea polymorpha species complex. G3: Genes, Genomes, Genetics, $2021,11,\ldots$	1.8	2
79	Draft Genome Sequence of a Diploid and Hybrid <i>Candida</i> Strain, <i>Candida sanyaensis</i> UCD423, Isolated from Compost in Ireland. Microbiology Resource Announcements, 2021, 10, e0076121.	0.6	2
80	Draft Genome Sequence of the Yeast <i>Ogataea degrootiae</i> Strain UCD465, Isolated from Soil in Ireland. Microbiology Resource Announcements, 2021, 10, e0073621.	0.6	2
81	Draft Genome Sequence of a Red Basidiomycete Yeast, Symmetrospora coprosmae Strain UCD350, Isolated from Soil in Ireland. Microbiology Resource Announcements, 2019, 8, .	0.6	2
82	Genome sequence data of the antagonistic soil-borne yeast Cyberlindnera sargentensis (SHA 17.2). Data in Brief, 2022, 40, 107799.	1.0	2
83	Draft Genome Sequences of Two Natural Isolates of the Yeast Barnettozyma californica from Ireland, UCD09 and UCD89. Genome Announcements, 2018, 6, .	0.8	1
84	Into the wildâ€"Exploring the life cycles of yeasts. Yeast, 2021, 38, 3-4.	1.7	0