List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9571176/publications.pdf Version: 2024-02-01

		28274	22166
139	14,243	55	113
papers	citations	h-index	g-index
141	141	141	15809
all docs	docs citations	times ranked	citing authors

IOS RADIOW

#	Article	IF	CITATIONS
1	Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 2011, 478, 378-381.	27.8	1,600
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
3	Prospects for tropical forest biodiversity in a humanâ€modified world. Ecology Letters, 2009, 12, 561-582.	6.4	735
4	Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 2016, 535, 144-147.	27.8	718
5	21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 2018, 9, 536.	12.8	485
6	The costâ€effectiveness of biodiversity surveys in tropical forests. Ecology Letters, 2008, 11, 139-150.	6.4	466
7	The future of hyperdiverse tropical ecosystems. Nature, 2018, 559, 517-526.	27.8	452
8	A largeâ€scale field assessment of carbon stocks in humanâ€modified tropical forests. Global Change Biology, 2014, 20, 3713-3726.	9.5	300
9	Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. Journal of Applied Ecology, 2008, 45, 883-893.	4.0	265
10	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
11	Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1787-1794.	4.0	255
12	How pervasive is biotic homogenization in humanâ€modified tropical forest landscapes?. Ecology Letters, 2015, 18, 1108-1118.	6.4	233
13	Biodiversity conservation in human-modified Amazonian forest landscapes. Biological Conservation, 2010, 143, 2314-2327.	4.1	218
14	The value of primary, secondary and plantation forests for Amazonian birds. Biological Conservation, 2007, 136, 212-231.	4.1	214
15	Clarifying Amazonia's burning crisis. Global Change Biology, 2020, 26, 319-321.	9.5	210
16	Detecting anthropogenic disturbance in tropical forests. Trends in Ecology and Evolution, 2006, 21, 227-229.	8.7	203
17	Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sensing, 2013, 5, 5493-5513.	4.0	198
18	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198

#	Article	IF	CITATIONS
19	Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 2002, 6, 6-8.	6.4	197
20	Ecological responses to El Niño–induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 367-380.	4.0	190
21	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 2016, 22, 92-109.	9.5	165
22	Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 2019, 366, 1236-1239.	12.6	164
23	Effects of ground fires on understorey bird assemblages in Amazonian forests. Biological Conservation, 2002, 105, 157-169.	4.1	155
24	The value of primary, secondary and plantation forests for fruitâ€feeding butterflies in the Brazilian Amazon. Journal of Applied Ecology, 2007, 44, 1001-1012.	4.0	155
25	Predicting the Uncertain Future of Tropical Forest Species in a Data Vacuum. Biotropica, 2007, 39, 25-30.	1.6	147
26	A framework for integrating biodiversity concerns into national REDD+ programmes. Biological Conservation, 2012, 154, 61-71.	4.1	138
27	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120166.	4.0	133
28	Management by proxy? The use of indices in applied ecology. Journal of Applied Ecology, 2015, 52, 1-6.	4.0	133
29	The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597, 77-81.	27.8	123
30	AVIFAUNAL RESPONSES TO SINGLE AND RECURRENT WILDFIRES IN AMAZONIAN FORESTS. , 2004, 14, 1358-1373.		121
31	Biodiversity consequences of land-use change and forest disturbance in the Amazon: A multi-scale assessment using ant communities. Biological Conservation, 2016, 197, 98-107.	4.1	119
32	Making rewilding fit for policy. Journal of Applied Ecology, 2018, 55, 1114-1125.	4.0	113
33	Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161289.	2.6	109
34	Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology, 2018, 24, 5680-5694.	9.5	107
35	A multi-region assessment of tropical forest biodiversity in a human-modified world. Biological Conservation, 2010, 143, 2293-2300.	4.1	100
36	Do spaceâ€forâ€ŧime assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. Journal of Applied Ecology, 2016, 53, 1098-1105.	4.0	99

#	Article	IF	CITATIONS
37	Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nature Climate Change, 2018, 8, 744-749.	18.8	98
38	The critical importance of considering fire in REDD+ programs. Biological Conservation, 2012, 154, 1-8.	4.1	95
39	Anthropogenic influence on Amazonian forests in preâ€history: An ecological perspective. Journal of Biogeography, 2015, 42, 2277-2288.	3.0	95
40	Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology, 2016, 97, 2760-2771.	3.2	92
41	Allocation of hunting effort by Amazonian smallholders: Implications for conserving wildlife in mixed-use landscapes. Biological Conservation, 2009, 142, 1777-1786.	4.1	87
42	Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species. Science, 2020, 370, 117-121.	12.6	87
43	Vertebrate responses to surface wildfires in a central Amazonian forest. Oryx, 2003, 37, .	1.0	85
44	Effects of Single and Recurrent Wildfires on Fruit Production and Large Vertebrate Abundance in a Central Amazonian Forest. Biodiversity and Conservation, 2006, 15, 985-1012.	2.6	84
45	Avian biodiversity in multiple-use landscapes of the Brazilian Amazon. Biological Conservation, 2013, 167, 339-348.	4.1	84
46	Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology, 2003, 19, 291-299.	1.1	81
47	Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180043.	4.0	79
48	Improving the design and management of forest strips in humanâ€dominated tropical landscapes: a field test on Amazonian dung beetles. Journal of Applied Ecology, 2010, 47, 779-788.	4.0	75
49	Large-vertebrate assemblages of primary and secondary forests in the Brazilian Amazon. Journal of Tropical Ecology, 2007, 23, 653-662.	1.1	74
50	Time to integrate global climate change and biodiversity scienceâ€policy agendas. Journal of Applied Ecology, 2021, 58, 2384-2393.	4.0	72
51	Hunting for Sustainability in Tropical Secondary Forests. Conservation Biology, 2009, 23, 1270-1280.	4.7	71
52	Climatic and local stressor interactions threaten tropical forests and coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190116.	4.0	69
53	Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170312.	4.0	64
54	Shifting Cultivation and Fire Policy: Insights from the Brazilian Amazon. Human Ecology, 2013, 41, 603-614.	1.4	63

#	Article	IF	CITATIONS
55	Disentangling the contribution of multiple land covers to fireâ€mediated carbon emissions in Amazonia during the 2010 drought. Global Biogeochemical Cycles, 2015, 29, 1739-1753.	4.9	63
56	Explaining the persistence of low income and environmentally degrading land uses in the Brazilian Amazon. Ecology and Society, 2017, 22, .	2.3	62
57	ls environmental legislation conserving tropical stream faunas? A largeâ€scale assessment of local, riparian and catchmentâ€scale influences on Amazonian fish. Journal of Applied Ecology, 2018, 55, 1312-1326.	4.0	62
58	Biodiversity and environmental context predict dung beetleâ€mediated seed dispersal in a tropical forest field experiment. Ecology, 2015, 96, 1607-1619.	3.2	60
59	Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests?. Functional Ecology, 2017, 31, 542-552.	3.6	57
60	Engaging multiple stakeholders to reconcile climate, conservation and development objectives in tropical landscapes. Biological Conservation, 2019, 238, 108229.	4.1	57
61	Challenges of Governing Second-Growth Forests: A Case Study from the Brazilian Amazonian State of Pará. Forests, 2014, 5, 1737-1752.	2.1	53
62	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
63	Biodiversity and landâ€use change: understanding the complex responses of an endemicâ€rich bird assemblage. Diversity and Distributions, 2013, 19, 411-422.	4.1	51
64	Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology, 2020, 101, e02954.	3.2	51
65	Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	51
66	Rainforest metropolis casts 1,000-km defaunation shadow. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8655-8659.	7.1	50
67	Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. Biological Conservation, 2017, 216, 115-122.	4.1	46
68	Spatial and temporal shifts in functional and taxonomic diversity of dung beetles in a human-modified tropical forest landscape. Ecological Indicators, 2018, 95, 518-526.	6.3	45
69	Diversity and composition of fruit-feeding butterflies in tropical Eucalyptus plantations. Biodiversity and Conservation, 2008, 17, 1089-1104.	2.6	44
70	Assessing the Importance of Intraspecific Variability in Dung Beetle Functional Traits. PLoS ONE, 2016, 11, e0145598.	2.5	43
71	The value of forest strips for understorey birds in an Amazonian plantation landscape. Biological Conservation, 2008, 141, 2262-2278.	4.1	41
72	Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecology Letters, 2020, 23, 99-106.	6.4	40

#	Article	IF	CITATIONS
73	Secondary forests offset less than 10% of deforestationâ€mediated carbon emissions in the Brazilian Amazon. Global Change Biology, 2020, 26, 7006-7020.	9.5	40
74	The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161634.	2.6	39
75	Biodiversity scientists must fight the creeping rise of extinction denial. Nature Ecology and Evolution, 2020, 4, 1440-1443.	7.8	39
76	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 2021, 252, 112122.	11.0	38
77	Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity. PLoS ONE, 2012, 7, e33373.	2.5	36
78	Research effort allocation and the conservation of restricted-range island bird species. Biological Conservation, 2011, 144, 627-632.	4.1	35
79	Factors Affecting the Abundance of Leaf-Litter Arthropods in Unburned and Thrice-Burned Seasonally-Dry Amazonian Forests. PLoS ONE, 2010, 5, e12877.	2.5	34
80	Evaluating the impacts and conservation value of exotic and native tree afforestation in Cerrado grasslands using dung beetles. Insect Conservation and Diversity, 2012, 5, 175-185.	3.0	34
81	Dung beetle community dynamics in undisturbed tropical forests: implications for ecological evaluations of landâ€use change. Insect Conservation and Diversity, 2017, 10, 94-106.	3.0	34
82	On the extinction of the singleâ€authored paper: The causes and consequences of increasingly collaborative applied ecological research. Journal of Applied Ecology, 2018, 55, 1-4.	4.0	34
83	Amazonian forest degradation must be incorporated into the COP26 agenda. Nature Geoscience, 2021, 14, 634-635.	12.9	32
84	Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environmental Research Letters, 2020, 15, 114023.	5.2	32
85	A Multiâ€Taxa Assessment of Biodiversity Change After Single and Recurrent Wildfires in a Brazilian Amazon Forest. Biotropica, 2016, 48, 170-180.	1.6	31
86	Seeing the woods through the saplings: Using wood density to assess the recovery of humanâ€modified Amazonian forests. Journal of Ecology, 2018, 106, 2190-2203.	4.0	31
87	Acoustic indices perform better when applied at ecologically meaningful time and frequency scales. Methods in Ecology and Evolution, 2021, 12, 421-431.	5.2	31
88	Solving environmental problems in the Anthropocene: the need to bring novel theoretical advances into the applied ecology fold. Journal of Applied Ecology, 2017, 54, 1-6.	4.0	30
89	Ensuring applied ecology has impact. Journal of Applied Ecology, 2012, 49, 1-5.	4.0	29
90	Two Hundred Years of Local Avian Extinctions in Eastern Amazonia. Conservation Biology, 2014, 28, 1271-1281.	4.7	29

#	Article	IF	CITATIONS
91	Idiosyncratic responses of Amazonian birds to primary forest disturbance. Oecologia, 2016, 180, 903-916.	2.0	29
92	Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170308.	4.0	29
93	Longâ€ŧerm Changes in Bird Communities after Wildfires in the Central Brazilian Amazon. Biotropica, 2013, 45, 480-488.	1.6	28
94	Tough fishing and severe seasonal food insecurity in Amazonian flooded forests. People and Nature, 2020, 2, 468-482.	3.7	28
95	Tropical forest fires and biodiversity: dung beetle community and biomass responses in a northern Brazilian Amazon forest. Journal of Insect Conservation, 2014, 18, 1097-1104.	1.4	26
96	Selective logging effects on â€~brown world' faecal-detritus pathway in tropical forests: A case study from Amazonia using dung beetles. Forest Ecology and Management, 2018, 410, 136-143.	3.2	26
97	The extent and distribution of joint conservation-development funding in the tropics. One Earth, 2020, 3, 753-762.	6.8	26
98	Does selective logging stress tropical forest invertebrates? Using fat stores to examine sublethal responses in dung beetles. Ecology and Evolution, 2016, 6, 8526-8533.	1.9	25
99	Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proceedings of the United States of America, 2022, 119, .	7.1	24
100	Morphological and phylogenetic factors structure the distribution of damselfly and dragonfly species (Odonata) along an environmental gradient in Amazonian streams. Ecological Indicators, 2021, 122, 107257.	6.3	23
101	Drought-driven wildfire impacts on structure and dynamics in a wet Central Amazonian forest. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210094.	2.6	23
102	hardRain: An R package for quick, automated rainfall detection in ecoacoustic datasets using a threshold-based approach. Ecological Indicators, 2020, 109, 105793.	6.3	22
103	Old-growth forest loss and secondary forest recovery across Amazonian countries. Environmental Research Letters, 2021, 16, 085009.	5.2	22
104	El Niño impacts on humanâ€modified tropical forests: Consequences for dung beetle diversity and associated ecological processes. Biotropica, 2020, 52, 252-262.	1.6	21
105	It is not just about time: Agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica, 2021, 53, 496-508.	1.6	21
106	A largeâ€scale assessment of plant dispersal mode and seed traits across humanâ€modified Amazonian forests. Journal of Ecology, 2020, 108, 1373-1385.	4.0	20
107	Fire risk perpetuates poverty and fire use among Amazonian smallholders. Global Environmental Change, 2020, 63, 102096.	7.8	19
108	Policy instruments to control Amazon fires: A simulation approach. Ecological Economics, 2017, 138, 199-222.	5.7	18

#	Article	IF	CITATIONS
109	Belowground changes to community structure alter methane-cycling dynamics in Amazonia. Environment International, 2020, 145, 106131.	10.0	18
110	Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities. Global Ecology and Biogeography, 2021, 30, 1430-1446.	5.8	18
111	The relative influence of different landscape attributes on dung beetle communities in the Brazilian Atlantic forest. Ecological Indicators, 2020, 117, 106534.	6.3	18
112	Effects of surface fires on understorey insectivorous birds and terrestrial arthropods in central Brazilian Amazonia. Animal Conservation, 2003, 6, 299-306.	2.9	17
113	Improving the spatialâ€ŧemporal analysis of Amazonian fires. Global Change Biology, 2021, 27, 469-471.	9.5	17
114	Reassessing the role of cattle and pasture in Brazil's deforestation: A response to "Fire, deforestation, and livestock: When the smoke clears― Land Use Policy, 2021, 108, 105195.	5.6	17
115	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17
116	FIRES IN BRAZILIAN AMAZON: WHY DOES POLICY HAVE A LIMITED IMPACT?. Ambiente & Sociedade, 2017, 20, 19-38.	0.5	16
117	Re-integrating ecology into integrated landscape approaches. Landscape Ecology, 2021, 36, 2395-2407.	4.2	16
118	Does the Establishment of Sustainable Use Reserves Affect Fire Management in the Humid Tropics?. PLoS ONE, 2016, 11, e0149292.	2.5	14
119	Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests. PLoS ONE, 2015, 10, e0133139.	2.5	13
120	Urban market amplifies strong species selectivity in Amazonian artisanal fisheries. Neotropical Ichthyology, 2021, 19, .	1.0	11
121	Spatio-temporal variation in dry season determines the Amazonian fire calendar. Environmental Research Letters, 2021, 16, 125009.	5.2	11
122	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	10.3	10
123	Fire Scars on Amazonian Trees: Exploring the Cryptic Fire History of the Ilha de MaracÃ _i . Biotropica, 2010, 42, 405-409.	1.6	9
124	Who knows, who cares? Untangling ecological knowledge and nature connection among Amazonian colonist farmers. People and Nature, 2021, 3, 431-445.	3.7	9
125	Functional redundancy of Amazonian dung beetles confers communityâ€level resistance to primary forest disturbance. Biotropica, 2021, 53, 1510-1521.	1.6	9
126	The consequences of fire for the fauna of humid tropical forests. , 2009, , 543-556.		8

#	Article	IF	CITATIONS
127	A shared perspective on managing Amazonian sustainableâ€use reserves in an era of megafires. Journal of Applied Ecology, 2020, 57, 2132-2138.	4.0	8
128	Functional susceptibility of tropical forests to climate change. Nature Ecology and Evolution, 2022, 6, 878-889.	7.8	8
129	Can Management Improve the Value of Shade Plantations for the Endemic Species of São Tomé Island?. Biotropica, 2014, 46, 238-247.	1.6	7
130	Are we selecting appropriate metrics to assess human impacts on biodiversity?. Basic and Applied Ecology, 2017, 21, 85-93.	2.7	6
131	Leaf-litter production in human-modified Amazonian forests following the El Niño-mediated drought and fires of 2015–2016. Forest Ecology and Management, 2021, 496, 119441.	3.2	6
132	Assessing invertebrate herbivory in humanâ€modified tropical forest canopies. Ecology and Evolution, 2021, 11, 4012-4022.	1.9	5
133	Comparing contemporary and lifetime rates of carbon accumulation from secondary forests in the eastern Amazon. Forest Ecology and Management, 2022, 508, 120053.	3.2	4
134	Achieving and communicating globally relevant applied ecological research. Journal of Applied Ecology, 2016, 53, 1-4.	4.0	3
135	Chapter 28: Restoration options for the Amazon. , 2021, , .		2
136	Predation on artificial caterpillars following understorey fires in humanâ€modified Amazonian forests. Biotropica, 2022, 54, 754-763.	1.6	1
137	Chapter 19: Drivers and ecological impacts of deforestation and forest degradation. , 2021, , .		1
138	Chapter 29: Restoration priorities and benefits within landscapes and catchments and across the Amazon basin. , 2021, , .		0
139	Chapter 27: Conservation measures to counter the main threats to Amazonian biodiversity. , 2021, , .		0