List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9571133/publications.pdf Version: 2024-02-01

WENCHAO HUANC

#	Article	IF	CITATIONS
1	Heating induced aggregation in non-fullerene organic solar cells towards high performance. Journal of Energy Chemistry, 2021, 54, 131-137.	12.9	21
2	Detection of Halomethanes Using Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 1454-1464.	14.6	32
3	Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 2021, 371, 636-640.	12.6	184
4	A Quinoxalineâ€Based D–A Copolymer Donor Achieving 17.62% Efficiency of Organic Solar Cells. Advanced Materials, 2021, 33, e2100474.	21.0	155
5	Non-equivalent D-A copolymerization strategy towards highly efficient polymer donor for polymer solar cells. Science China Chemistry, 2021, 64, 1031-1038.	8.2	25
6	Nonâ€Halogenatedâ€Solvent Processed and Additiveâ€Free Tandem Organic Solar Cell with Efficiency Reaching 16.67%. Advanced Functional Materials, 2021, 31, 2102361.	14.9	40
7	Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372, 1327-1332.	12.6	351
8	Stable perovskite solar cells with efficiency of 22.6% via quinoxaline-based polymeric hole transport material. Science China Chemistry, 2021, 64, 2035-2044.	8.2	28
9	Dynamic Antisolvent Engineering for Spin Coating of 10 × 10 cm ² Perovskite Solar M Approaching 18%. Solar Rrl, 2020, 4, 1900263.	1odule	52
10	Efficient and Mechanically Robust Ultraflexible Organic Solar Cells Based on Mixed Acceptors. Joule, 2020, 4, 128-141.	24.0	101
11	Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy, 2020, 78, 105272.	16.0	132
12	Correlation of Nanomorphology with Structural and Spectroscopic Studies in Organic Solar Cells. ACS Applied Nano Materials, 2020, 3, 11080-11089.	5.0	7
13	Modulation of J-Aggregation of Nonfullerene Acceptors toward Near-Infrared Absorption and Enhanced Efficiency. Macromolecules, 2020, 53, 3747-3755.	4.8	38
14	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy, 2020, 75, 104917.	16.0	44
15	Stabilizing High Efficiency Perovskite Solar Cells with 3D-2D Heterostructures. Joule, 2020, 4, 975-979.	24.0	37
16	Highly efficient organic photovoltaics with enhanced stability through the formation of doping-induced stable interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6391-6397.	7.1	53
17	A Nontoxic Bifunctional (Anti)Solvent as Digestiveâ€Ripening Agent for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2020, 32, e1907123.	21.0	82
18	Rapid Microwaveâ€Annealing Process of Hybrid Perovskites to Eliminate Miscellaneous Phase for High Performance Photovoltaics. Advanced Science, 2020, 7, 2000480.	11.2	34

#	Article	IF	CITATIONS
19	Highly Efficient All‣mallâ€Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing. Advanced Materials, 2020, 32, e1908373.	21.0	162
20	Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Materials Horizons, 2020, 7, 2276-2291.	12.2	66
21	Design of a Rigid Scaffold Structure toward Efficient and Stable Organic Photovoltaics. Matter, 2019, 1, 402-411.	10.0	8
22	Multiple Roles of Cobalt Pyrazol-Pyridine Complexes in High-Performing Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4675-4682.	4.6	13
23	Rational Tuning of Molecular Interaction and Energy Level Alignment Enables Highâ€Performance Organic Photovoltaics. Advanced Materials, 2019, 31, e1904215.	21.0	162
24	Oriented Attachment as the Mechanism for Microstructure Evolution in Chloride-Derived Hybrid Perovskite Thin Films. ACS Applied Materials & amp; Interfaces, 2019, 11, 39930-39939.	8.0	26
25	Fatigue stability of CH3NH3PbI3 based perovskite solar cells in day/night cycling. Nano Energy, 2019, 58, 687-694.	16.0	46
26	Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10, 570.	12.8	377
27	Sub-sized monovalent alkaline cations enhanced electrical stability for over 17% hysteresis-free planar perovskite solar mini-module. Electrochimica Acta, 2019, 306, 635-642.	5.2	9
28	Surface modification <i>via</i> self-assembling large cations for improved performance and modulated hysteresis of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 6793-6800.	10.3	48
29	Durable Ultraflexible Organic Photovoltaics with Novel Metalâ€Oxideâ€Free Cathode. Advanced Functional Materials, 2019, 29, 1808378.	14.9	34
30	20% Efficient Perovskite Solar Cells with 2D Electron Transporting Layer. Advanced Functional Materials, 2019, 29, 1805168.	14.9	67
31	Highâ€Performance Organic Bulkâ€Heterojunction Solar Cells Based on Multipleâ€Donor or Multipleâ€Acceptor Components. Advanced Materials, 2018, 30, 1705706.	21.0	161
32	Ternary System with Controlled Structure: A New Strategy toward Efficient Organic Photovoltaics. Advanced Materials, 2018, 30, 1705243.	21.0	105
33	Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. Nano Letters, 2018, 18, 2442-2449.	9.1	195
34	Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, 2018, 48, 117-127.	16.0	60
35	Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21%. Journal of the American Chemical Society, 2018, 140, 17255-17262.	13.7	235
36	High Efficiency Non-fullerene Organic Tandem Photovoltaics Based on Ternary Blend Subcells. Nano Letters, 2018, 18, 7977-7984.	9.1	27

#	Article	IF	CITATIONS
37	Suppressed hysteresis and enhanced performance of triple cation perovskite solar cell with chlorine incorporation. Journal of Materials Chemistry C, 2018, 6, 13157-13161.	5.5	18
38	Unique Energy Alignments of a Ternary Material System toward Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1801501.	21.0	116
39	High Mobility Indium Oxide Electron Transport Layer for an Efficient Charge Extraction and Optimized Nanomorphology in Organic Photovoltaics. Nano Letters, 2018, 18, 5805-5811.	9.1	31
40	Influence of Fullerene Acceptor on the Performance, Microstructure, and Photophysics of Low Bandgap Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602197.	19.5	38
41	Carbon Quantum Dots/TiO _{<i>x</i>} Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%. Nano Letters, 2017, 17, 2328-2335.	9.1	211
42	Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Science Advances, 2017, 3, e1601935.	10.3	354
43	High efficiency solid-state dye-sensitized solar cells using a cobalt(<scp>ii</scp> / <scp>iii</scp>) redox mediator. Journal of Materials Chemistry C, 2017, 5, 4875-4883.	5.5	14
44	Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy, 2017, 36, 213-222.	16.0	100
45	17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. Journal of Materials Chemistry A, 2017, 5, 22952-22958.	10.3	119
46	High‣fficiency Organic Tandem Solar Cells With Effective Transition Metal Chelates Interconnecting Layer. Solar Rrl, 2017, 1, 1700139.	5.8	19
47	Isolating and quantifying the impact of domain purity on the performance of bulk heterojunction solar cells. Energy and Environmental Science, 2017, 10, 1843-1853.	30.8	31
48	Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017, 31, 210-217.	16.0	142
49	Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH ₃ NH ₃ PbI ₃ Morphology. Advanced Functional Materials, 2016, 26, 1278-1285.	14.9	90
50	Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances, 2016, 6, 89356-89366.	3.6	69
51	Impact of Fullerene Mixing Behavior on the Microstructure, Photophysics, and Device Performance of Polymer/Fullerene Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 29608-29618.	8.0	24
52	Atomically thin lateral p–n junction photodetector with large effective detection area. 2D Materials, 2016, 3, 041001.	4.4	78
53	Metal Evaporation-Induced Degradation of Fullerene Acceptors in Polymer/Fullerene Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 2247-2254.	8.0	13
54	Probing Molecular and Crystalline Orientation in Solutionâ€Processed Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 5529-5536.	14.9	57

#	Article	IF	CITATIONS
55	Tuning Rheological Performance of Silica Concentrated Shear Thickening Fluid by Using Graphene Oxide. Advances in Condensed Matter Physics, 2015, 2015, 1-5.	1.1	38
56	In-Depth Understanding of the Morphology–Performance Relationship in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14026-14034.	8.0	36
57	A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 16313-16319.	10.3	38
58	Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTT‣FT. Advanced Energy Materials, 2015, 5, 1401259.	19.5	100
59	Titania nanobundle networks as dye-sensitized solar cell photoanodes. Nanoscale, 2014, 6, 3704-3711.	5.6	34
60	Controlling Interfacial Recombination in Aqueous Dyeâ€Sensitized Solar Cells by Octadecyltrichlorosilane Surface Treatment. Angewandte Chemie - International Edition, 2014, 53, 6933-6937.	13.8	55
61	A Fast Depositionâ€Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thinâ€Film Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 9898-9903.	13.8	1,292
62	Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy, 2014, 10, 10-18.	16.0	504
63	Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte. Chemical Communications, 2013, 49, 8997.	4.1	76
64	Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) preâ€polymer and gel. Polymer International, 2013, 62, 534-547.	3.1	95
65	A comparative study on poly(xylitol sebacate) and poly(glycerol sebacate): mechanical properties, biodegradation and cytocompatibility. Biomedical Materials (Bristol), 2013, 8, 035006.	3.3	39
66	An alternative flexible electrode for dye-sensitized solar cells. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	10
67	Effects of Carbon Nanofiber on Dielectric Properties of PMN/CNFs/EP Composites. Polymer-Plastics Technology and Engineering, 2011, 50, 1590-1593.	1.9	2
68	Light induced quasi-Fermi level splitting in molecular semiconductor alloys. Materials Advances, 0, , .	5.4	2