
Janine Kirstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9570212/publications.pdf Version: 2024-02-01

IANINE KIDSTEIN

#	Article	IF	CITATIONS
1	Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Progress in Neurobiology, 2021, 198, 101907.	5.7	14
2	J-domain proteins interaction with neurodegenerative disease-related proteins. Experimental Cell Research, 2021, 399, 112491.	2.6	16
3	The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy. International Journal of Molecular Sciences, 2021, 22, 462.	4.1	5
4	An Expanded Polyproline Domain Maintains Mutant Huntingtin Soluble in vivo and During Aging. Frontiers in Molecular Neuroscience, 2021, 14, 721749.	2.9	6
5	The cellular modifier MOAGâ€4/SERF drives amyloid formation through charge complementation. EMBO Journal, 2021, 40, e107568.	7.8	15
6	Reducing INS-IGF1 signaling protects against non-cell autonomous vesicle rupture caused by SNCA spreading. Autophagy, 2020, 16, 878-899.	9.1	22
7	Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation in Affected Brains. Cell Reports, 2020, 32, 108050.	6.4	64
8	In Vivo Quantification of Protein Turnover in Aging C. Elegans using Photoconvertible Dendra2. Journal of Visualized Experiments, 2020, , .	0.3	4
9	The noncanonical small heat shock protein HSP-17 from Caenorhabditis elegans is a selective protein aggregase. Journal of Biological Chemistry, 2020, 295, 3064-3079.	3.4	9
10	Structural Characterization of Huntingtin: Mechanism of Aggregation and Disaggregation. Biophysical Journal, 2020, 118, 216a.	0.5	0
11	Characterization of Amyloid Structures in Aging C. Elegans Using Fluorescence Lifetime Imaging. Journal of Visualized Experiments, 2020, , .	0.3	5
12	ATM phosphorylation of the actin-binding protein drebrin controls oxidation stress-resistance in mammalian neurons and C. elegans. Nature Communications, 2019, 10, 486.	12.8	25
13	Crosstalk Between Chaperone-Mediated Protein Disaggregation and Proteolytic Pathways in Aging and Disease. Frontiers in Aging Neuroscience, 2019, 11, 9.	3.4	12
14	Exposure of a cryptic Hsp70 binding site determines the cytotoxicity of the ALS-associated SOD1-mutant A4V. Protein Engineering, Design and Selection, 2019, 32, 443-457.	2.1	6
15	Structural Characterization of the Mechanism of Aggregation and Disaggregation of Huntingtin. Biophysical Journal, 2018, 114, 427a.	0.5	0
16	Dynamic recruitment of ubiquitin to mutant huntingtin inclusion bodies. Scientific Reports, 2018, 8, 1405.	3.3	27
17	Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex. EMBO Journal, 2018, 37, 282-299.	7.8	115
18	mHTT Seeding Activity: A Marker of Disease Progression and Neurotoxicity in Models of Huntington's Disease. Molecular Cell, 2018, 71, 675-688.e6.	9.7	50

JANINE KIRSTEIN

#	Article	IF	CITATIONS
19	Reduced Insulin/IGF-1 Signaling Restores the Dynamic Properties of Key Stress Granule Proteins during Aging. Cell Reports, 2017, 18, 454-467.	6.4	54
20	<i>In vivo</i> properties of the disaggregase function of Jâ€proteins and Hsc70 in <i>Caenorhabditis elegans</i> stress and aging. Aging Cell, 2017, 16, 1414-1424.	6.7	53
21	Cellular strategies to cope with protein aggregation. Essays in Biochemistry, 2016, 60, 153-161.	4.7	11
22	Interplay between redox and protein homeostasis. Worm, 2016, 5, e1170273.	1.0	11
23	Collapse of redox homeostasis during aging and stress. Molecular and Cellular Oncology, 2016, 3, e1091060.	0.7	6
24	Proteotoxic stress and ageing triggers the loss of redox homeostasis across cellular compartments. EMBO Journal, 2015, 34, 2334-2349.	7.8	78
25	Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature, 2015, 524, 247-251.	27.8	320
26	Interrelation Between Protein Synthesis, Proteostasis and Life Span. Current Genomics, 2014, 15, 66-75.	1.6	16
27	The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO Journal, 2013, 32, 1451-1468.	7.8	131
28	Ribosome-associated chaperones act as proteostasis sentinels. Cell Cycle, 2013, 12, 2335-2336.	2.6	5
29	Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX. Journal of Structural Biology, 2012, 179, 193-201.	2.8	42
30	Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO Journal, 2012, 31, 4221-4235.	7.8	284
31	<i>Caenorhabditis elegans</i> as a model system to study intercompartmental proteostasis: Interrelation of mitochondrial function, longevity, and neurodegenerative diseases. Developmental Dynamics, 2010, 239, 1529-1538.	1.8	44
32	In-Depth Profiling of the LiaR Response of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2010, 192, 4680-4693.	2.2	107
33	Peptides Signal Mitochondrial Stress. Cell Metabolism, 2010, 11, 177-178.	16.2	16
34	The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Molecular Medicine, 2009, 1, 37-49.	6.9	196
35	Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nature Reviews Microbiology, 2009, 7, 589-599.	28.6	232
36	Conserved residues in the Nâ€domain of the AAA+ chaperone ClpA regulate substrate recognition and unfolding. FEBS Journal, 2008, 275, 1400-1410.	4.7	24

JANINE KIRSTEIN

#	Article	IF	CITATIONS
37	Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nature Structural and Molecular Biology, 2008, 15, 641-650.	8.2	139
38	Localization of general and regulatory proteolysis in <i>Bacillus subtilis</i> cells. Molecular Microbiology, 2008, 70, 682-694.	2.5	48
39	The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO Journal, 2007, 26, 2061-2070.	7.8	95
40	Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO Journal, 2006, 25, 1481-1491.	7.8	127
41	Cyanobacterial ClpC/HSP100 Protein Displays Intrinsic Chaperone Activity. Journal of Biological Chemistry, 2006, 281, 5468-5475.	3.4	46
42	A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO Journal, 2005, 24, 3435-3445.	7.8	108
43	A New Tyrosine Phosphorylation Mechanism Involved in Signal Transduction in <i>Bacillus subtilis</i> . Journal of Molecular Microbiology and Biotechnology, 2005, 9, 182-188.	1.0	43
44	Fine-Tuning in Regulation of Clp Protein Content in Bacillus subtilis. Journal of Bacteriology, 2004, 186, 179-191.	2.2	80
45	Binding of Ïf A and Ïf B to Core RNA Polymerase after Environmental Stress in Bacillus subtilis. Journal of Bacteriology, 2003, 185, 35-40.	2.2	25
46	Monocarboxylate transporter 8 deficiency leads to autophagy-induced persistent cathepsin-mediated thyroglobulin processing triggered by insufficient L-type amino acid transporter 2 functionality. Endocrine Abstracts, 0, , .	0.0	0