Jaiyul Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9569566/publications.pdf

Version: 2024-02-01

		279798	182427
54	3,497	23	51
papers	citations	h-index	g-index
57	57	57	2718
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The spatial gauge-dependence of single-field inflationary bispectra. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 828, 137018.	4.1	4
2	Monopole fluctuation of the CMB and its gauge invariance. Physical Review D, 2021, 103, .	4.7	8
3	Cutting out the cosmological middle man: general relativity in the light-cone coordinates. Classical and Quantum Gravity, 2021, 38, 055011.	4.0	13
4	General relativistic effects in weak lensing angular power spectra. Physical Review D, 2021, 104, .	4.7	3
5	Maximum cosmological information from type la supernova observations. Physical Review D, 2020, 101,	4.7	2
6	Tetrad Formalism for Exact Cosmological Observables. SpringerBriefs in Physics, 2020, , .	0.7	6
7	Galaxy power spectrum in general relativity. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 064-064.	5.4	18
8	General and consistent statistics for cosmological observations. Physical Review Research, 2020, 2, .	3.6	17
9	General-Relativistic Matrix Kinetic Theory. SpringerBriefs in Physics, 2020, , 83-131.	0.7	O
_			
10	Observer Space-Time Formalism. SpringerBriefs in Physics, 2020, , 51-81.	0.7	0
10	Observer Space-Time Formalism. SpringerBriefs in Physics, 2020, , 51-81. Mathematical Framework. SpringerBriefs in Physics, 2020, , 21-50.	0.7	0
11	Mathematical Framework. SpringerBriefs in Physics, 2020, , 21-50. Cosmological information contents on the light-cone. Journal of Cosmology and Astroparticle	0.7	0
11 12	Mathematical Framework. SpringerBriefs in Physics, 2020, , 21-50. Cosmological information contents on the light-cone. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015. Background photon temperature <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mover accent="true"><mml:mi>T</mml:mi><mml:mostretchy="false">Â^</mml:mostretchy="false"></mml:mover></mml:math> : A new cosmological Parameter?. Physical	0.7 5.4	13
11 12 13	Mathematical Framework. SpringerBriefs in Physics, 2020, , 21-50. Cosmological information contents on the light-cone. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015. Background photon temperature <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mover accent="true"><mml:mi>T</mml:mi><mml:mostretchy="false">\hat{A}^-</mml:mostretchy="false"></mml:mover></mml:math> : A new cosmological Parameter?. Physical Review D. 2019. 100 Jacobi mapping approach for a precise cosmological weak lensing formalism. Journal of Cosmology	0.7 5.4 4.7	0 13 16
11 12 13	Mathematical Framework. SpringerBriefs in Physics, 2020, , 21-50. Cosmological information contents on the light-cone. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015. Background photon temperature <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo><mml:mo>T<mml:mo stretchy="false">Â^</mml:mo></mml:mo></mml:mo></mml:math> : A new cosmological Parameter?. Physical Review D. 2019. 100. Jacobi mapping approach for a precise cosmological weak lensing formalism. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 067-067.	0.7 5.4 4.7 5.4	0 13 16 14
11 12 13 14	Mathematical Framework. SpringerBriefs in Physics, 2020, , 21-50. Cosmological information contents on the light-cone. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015. Background photon temperature <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mover accent="true"> <mml:mi>T</mml:mi>T <mml:mo stretchy="false">A-</mml:mo></mml:mover></mml:math> : A new cosmological Parameter?. Physical Review D. 2019. 100. Jacobi mapping approach for a precise cosmological weak lensing formalism. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 067-067. Non-linear general relativistic effects in the observed redshift. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 037-037. Galaxy two-point correlation function in general relativity. Journal of Cosmology and Astroparticle	0.75.44.75.45.4	0 13 16 14

#	Article	IF	CITATIONS
19	Exact non-linear equations for cosmological perturbations. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 027-027.	5.4	13
20	Correlation function of the luminosity distances. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 026-026.	5.4	15
21	Gauge-transformation properties of cosmological observables and its application to the light-cone average. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 016-016.	5.4	24
22	Light-cone observables and gauge-invariance in the geodesic light-cone formalism. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 007-007.	5.4	15
23	Unified treatment of the luminosity distance in cosmology. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 046-046.	5.4	23
24	Exact analytic solution for non-linear density fluctuation in a \hat{b} CDM universe. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 017-017.	5.4	10
25	Relativistic effects and primordial non-Gaussianity in the matter density fluctuation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 754, 94-98.	4.1	7
26	Wide-angle effects in future galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1789-1805.	4.4	64
27	Proper-time hypersurface of nonrelativistic matter flows: Galaxy bias in general relativity. Physical Review D, 2014, 90, .	4.7	20
28	Relativistic effect in galaxy clustering. Classical and Quantum Gravity, 2014, 31, 234001.	4.0	52
29	Beyond the linear-order relativistic effect in galaxy clustering: Second-order gauge-invariant formalism. Physical Review D, 2014, 90, .	4.7	87
30	Signatures of first stars in galaxy surveys: Multitracer analysis of the supersonic relative velocity effect and the constraints from the BOSS power spectrum measurements. Physical Review D, 2013, 88, .	4.7	22
31	All-sky analysis of the general relativistic galaxy power spectrum. Physical Review D, 2013, 88, .	4.7	49
32	Relativistic effects in galaxy clustering in a parametrized post-Friedmann universe. Physical Review D, 2013, 87, .	4.7	49
33	Going beyond the Kaiser redshift-space distortion formula: A full general relativistic account of the effects and their detectability in galaxy clustering. Physical Review D, 2012, 86, .	4.7	111
34	Joint analysis of gravitational lensing, clustering, and abundance: Toward the unification of large-scale structure analysis. Physical Review D, 2012, 86, .	4.7	32
35	Supersonic relative velocity effect on the baryonic acoustic oscillation measurements. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 018-018.	5.4	53
36	Lensing reconstruction of cluster-mass cross correlation with cosmic microwave background polarization. Physical Review D, 2010, 81 , .	4.7	16

#	Article	IF	CITATIONS
37	Gravitational lensing effects on the baryonic acoustic oscillation signature in the redshift-space correlation function. Physical Review D, 2010, 82, .	4.7	5
38	General relativistic description of the observed galaxy power spectrum: Do we understand what we measure? Physical Review D, 2010, 82, .	4.7	203
39	EXTENDING RECOVERY OF THE PRIMORDIAL MATTER POWER SPECTRUM. Astrophysical Journal, 2009, 698, 967-985.	4.5	17
40	A QUANTITATIVE EXPLANATION OF THE OBSERVED POPULATION OF MILKY WAY SATELLITE GALAXIES. Astrophysical Journal, 2009, 696, 2179-2194.	4.5	193
41	New perspective on galaxy clustering as a cosmological probe: General relativistic effects. Physical Review D, 2009, 80, .	4.7	255
42	Complete treatment of galaxy two-point statistics: Gravitational lensing effects and redshift-space distortions. Physical Review D, 2009, 79, .	4.7	40
43	Improved estimation of cluster mass profiles from the cosmic microwave background. Physical Review D, 2008, 78, .	4.7	22
44	The Most Massive Black Holes in the Universe: Effects of Mergers in Massive Galaxy Clusters. Astrophysical Journal, 2007, 667, 813-825.	4.5	28
45	Cosmological constraints from the SDSS luminous red galaxies. Physical Review D, 2006, 74, .	4.7	1,132
46	From Galaxyâ€Galaxy Lensing to Cosmological Parameters. Astrophysical Journal, 2006, 652, 26-42.	4.5	64
47	Halo Structures of Gravitational Lens Galaxies. Astrophysical Journal, 2006, 642, 22-29.	4.5	41
48	The Lens Galaxy in PG 1115+080 is an Ellipse. Astrophysical Journal, 2005, 626, 51-57.	4.5	31
49	The End of the MACHO Era: Limits on Halo Dark Matter from Stellar Halo Wide Binaries. Astrophysical Journal, 2004, 601, 311-318.	4.5	129
50	Formation of the Black Holes in the Highest Redshift Quasars. Astrophysical Journal, 2004, 614, L25-L28.	4.5	86
51	Constraints on Planetary Companions in the MagnificationA = 256 Microlensing Event OGLEâ€2003â€Bl Astrophysical Journal, 2004, 616, 1204-1214.	_Çâ€ 4 23.	57
52	OGLEâ€2003â€BLGâ€262: Finiteâ€Source Effects from a Pointâ€Mass Lens. Astrophysical Journal, 2004, 603, 139	9 4.5 1.	313
53	Profiles of the resonance doublets formed in bipolar winds in symbiotic stars. Monthly Notices of the Royal Astronomical Society, 2002, 334, 974-982.	4.4	5
54	Polarization of the broad $H\hat{l}\pm$ wing in symbiotic stars. Monthly Notices of the Royal Astronomical Society, 2002, 336, 467-476.	4.4	11