
Oscar Godoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9569459/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moving towards the ecological intensification of tree plantations. Trends in Plant Science, 2022, 27, 637-645.	8.8	8
2	Disentangling key species interactions in diverse and heterogeneous communities: A Bayesian sparse modelling approach. Ecology Letters, 2022, 25, 1263-1276.	6.4	17
3	Towards a system-level causative knowledge of pollinator communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210159.	4.0	5
4	Application of modern coexistence theory to rare plant restoration provides early indication of restoration trajectories. Ecological Applications, 2022, 32, e2649.	3.8	10
5	Specific sequence of arrival promotes coexistence via spatial niche preâ€emption by the weak competitor. Ecology Letters, 2022, 25, 1629-1639.	6.4	18
6	Effects of pigment richness and size variation on coexistence, richness and function in lightâ€ŀimited phytoplankton. Journal of Ecology, 2021, 109, 2385-2394.	4.0	15
7	Experimental evidence of the importance of multitrophic structure for species persistence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
8	Frequencyâ€dependent tree growth depends on climate. Ecology, 2021, 102, e03284.	3.2	3
9	Identifying "Useful―Fitness Models: Balancing the Benefits of Added Complexity with Realistic Data Requirements in Models of Individual Plant Fitness. American Naturalist, 2021, 197, 415-433.	2.1	20
10	Reinterpreting the relationship between number of species and number of links connects community structure and stability. Nature Ecology and Evolution, 2021, 5, 1102-1109.	7.8	17
11	Soil fauna modulates the effect of experimental drought on litter decomposition in forests invaded by an exotic pathogen. Journal of Ecology, 2021, 109, 2963-2980.	4.0	14
12	Proportion of non-native plants in urban parks correlates with climate, socioeconomic factors and plant traits. Urban Forestry and Urban Greening, 2021, 63, 127215.	5.3	10
13	Species richness increases fitness differences, but does not affect niche differences. Ecology Letters, 2021, 24, 2611-2623.	6.4	12
14	Mapping species niche and fitness differences for communities with multiple interaction types. Oikos, 2021, 130, 2065-2077.	2.7	25
15	The morphometric acclimation to depth explains the long-term resilience of the seagrass Cymodocea nodosa in a shallow tidal lagoon. Journal of Environmental Management, 2021, 299, 113452.	7.8	17
16	The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community. Nature Communications, 2021, 12, 6192.	12.8	10
17	Fine scale prediction of ecological community composition using a two-step sequential Machine Learning ensemble. PLoS Computational Biology, 2021, 17, e1008906.	3.2	3
18	Phenological responses to climate change in communities of plants species with contrasting functional strategies. Environmental and Experimental Botany, 2020, 170, 103852.	4.2	29

OSCAR GODOY

#	Article	IF	CITATIONS
19	The topology and drivers of ant–symbiont networks across Europe. Biological Reviews, 2020, 95, 1664-1688.	10.4	18
20	An excess of niche differences maximizes ecosystem functioning. Nature Communications, 2020, 11, 4180.	12.8	33
21	cxr : A toolbox for modelling species coexistence in R. Methods in Ecology and Evolution, 2020, 11, 1221-1226.	5.2	12
22	Intuitive and broadly applicable definitions of niche and fitness differences. Ecology Letters, 2020, 23, 1117-1128.	6.4	55
23	Alien Plant Species: Environmental Risks in Agricultural and Agro-Forest Landscapes Under Climate Change. Climate Change Management, 2019, , 215-234.	0.8	2
24	Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nature Communications, 2019, 10, 2555.	12.8	104
25	Exploring interactive effects of climate change and exotic pathogens on Quercus suber performance: Damage caused by Phytophthora cinnamomi varies across contrasting scenarios of soil moisture. Agricultural and Forest Meteorology, 2019, 276-277, 107605.	4.8	26
26	Functional and phylogenetic consequences of plant invasion for coastal native communities. Journal of Vegetation Science, 2019, 30, 510-520.	2.2	25
27	Coexistence theory as a tool to understand biological invasions in species interaction networks: Implications for the study of novel ecosystems. Functional Ecology, 2019, 33, 1190-1201.	3.6	36
28	Global effects of nonâ€native tree species on multiple ecosystem services. Biological Reviews, 2019, 94, 1477-1501.	10.4	158
29	Disentangling the climatic and biotic factors driving changes in the dynamics of <i>Quercus suber</i> populations across the species†latitudinal range. Diversity and Distributions, 2019, 25, 524-535.	4.1	27
30	An experimental extreme drought reduces the likelihood of species to coexist despite increasing intransitivity in competitive networks. Journal of Ecology, 2018, 106, 826-837.	4.0	64
31	Opposing effects of floral visitors and soil conditions on the determinants of competitive outcomes maintain species diversity in heterogeneous landscapes. Ecology Letters, 2018, 21, 865-874.	6.4	60
32	Towards the Integration of Niche and Network Theories. Trends in Ecology and Evolution, 2018, 33, 287-300.	8.7	112
33	Trait syndromes among North American trees are evolutionarily conserved and show adaptive value over broad geographic scales. Ecography, 2018, 41, 540-550.	4.5	15
34	An indicator-based approach to analyse the effects of non-native tree species on multiple cultural ecosystem services. Ecological Indicators, 2018, 85, 48-56.	6.3	42
35	A competition–defence tradeâ€off both promotes and weakens coexistence in an annual plant community. Journal of Ecology, 2018, 106, 1806-1818.	4.0	47
36	Fine Scale Determinants of Soil Litter Fauna on a Mediterranean Mixed Oak Forest Invaded by the Exotic Soil-Borne Pathogen Phytophthora cinnamomi. Forests, 2018, 9, 218.	2.1	8

OSCAR GODOY

#	Article	IF	CITATIONS
37	Biotic controls of plant coexistence. Journal of Ecology, 2018, 106, 1767-1772.	4.0	18
38	Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. Ecology, 2017, 98, 1193-1200.	3.2	93
39	A structural approach for understanding multispecies coexistence. Ecological Monographs, 2017, 87, 470-486.	5.4	208
40	Spatial and evolutionary parallelism between shade and drought tolerance explains the distributions of conifers in the conterminous United States. Global Ecology and Biogeography, 2017, 26, 31-42.	5.8	34
41	Interaction of the aphid-parasitoid-ant network in plants associated with an organic citrus grove. Ecosistemas, 2017, 26, 67-79.	0.4	2
42	Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions. Nature Communications, 2016, 7, 12486.	12.8	54
43	Species coexistence in a changing world. Frontiers in Plant Science, 2015, 6, 866.	3.6	132
44	Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 797-802.	7.1	701
45	Functional determinants of forest recruitment over broad scales. Global Ecology and Biogeography, 2015, 24, 192-202.	5.8	13
46	Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 2015, 29, 592-599.	3.6	1,126
47	Lack of superiority of invasive over co-occurring native riparian tree seedling species. Biological Invasions, 2014, 16, 269-281.	2.4	15
48	Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters, 2014, 17, 836-844.	6.4	288
49	What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A metaâ€analysis. Ecology Letters, 2014, 17, 1-12.	6.4	194
50	Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology, 2014, 95, 726-736.	3.2	205
51	Functional variation of leaf succulence in a cold rainforest epiphyte. Plant Ecology and Evolution, 2013, 146, 167-172.	0.7	7
52	The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. New Phytologist, 2012, 195, 912-922.	7.3	82
53	Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Functional Ecology, 2011, 25, 1248-1259.	3.6	168
54	Predicting invasiveness of Australian acacias on the basis of their native climatic affinities, life history traits and human use. Diversity and Distributions, 2011, 17, 934-945.	4.1	96

OSCAR GODOY

#	Article	IF	CITATIONS
55	Invasive species can handle higher leaf temperature under water stress than Mediterranean natives. Environmental and Experimental Botany, 2011, 71, 207-214.	4.2	50
56	Forests are not immune to plant invasions: phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest. Biological Invasions, 2011, 13, 1615-1625.	2.4	60
57	Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia, 2010, 162, 781-790.	2.0	77
58	Different flowering phenology of alien invasive species in Spain: evidence for the use of an empty temporal niche?. Plant Biology, 2009, 11, 803-811.	3.8	71
59	Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems. Annals of Botany, 2009, 103, 485-494.	2.9	87
60	Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11, 1065-1071.	6.4	1,913