Juan Bisquert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9568899/publications.pdf

Version: 2024-02-01

432 papers

51,762 citations

113 h-index 217 g-index

440 all docs

440 docs citations

times ranked

440

32110 citing authors

#	Article	IF	CITATIONS
1	Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy and Environmental Science, 2015, 8, 2118-2127.	30.8	1,278
2	Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer. Journal of Physical Chemistry B, 2002, 106, 325-333.	2.6	1,179
3	Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements. ChemPhysChem, 2003, 4, 859-864.	2.1	1,166
4	Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells, 2005, 87, 117-131.	6.2	1,107
5	Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 9083.	2.8	1,084
6	Characteristics of High Efficiency Dye-Sensitized Solar Cellsâ€. Journal of Physical Chemistry B, 2006, 110, 25210-25221.	2.6	1,015
7	Low-Temperature Processed Electron Collection Layers of Graphene/TiO ₂ Nanocomposites in Thin Film Perovskite Solar Cells. Nano Letters, 2014, 14, 724-730.	9.1	999
8	Water Oxidation at Hematite Photoelectrodes: The Role of Surface States. Journal of the American Chemical Society, 2012, 134, 4294-4302.	13.7	895
9	Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method. Journal of the American Chemical Society, 2004, 126, 13550-13559.	13.7	875
10	Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids. Journal of Physical Chemistry C, 2007, 111, 6550-6560.	3.1	870
11	General Working Principles of CH ₃ NH ₃ PbX ₃ Perovskite Solar Cells. Nano Letters, 2014, 14, 888-893.	9.1	786
12	Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Communications, 2013, 4, 2242.	12.8	760
13	Recombination in Quantum Dot Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1848-1857.	15.6	747
14	Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements. Journal of Physical Chemistry C, 2009, 113, 17278-17290.	3.1	694
15	Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Physical Chemistry Chemical Physics, 2003, 5, 5360.	2.8	693
16	Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews, 2014, 114, 10095-10130.	47.7	669
17	Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with "Co–Pi―Coated Hematite Electrodes. Journal of the American Chemical Society, 2012, 134, 16693-16700.	13.7	635
18	Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2390-2394.	4.6	629

#	Article	IF	CITATIONS
19	Modeling High-Efficiency Quantum Dot Sensitized Solar Cells. ACS Nano, 2010, 4, 5783-5790.	14.6	615
20	Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. Journal of Physical Chemistry Letters, 2014, 5, 2357-2363.	4.6	609
21	Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 8106-8118.	2.6	584
22	High-Efficiency "Green―Quantum Dot Solar Cells. Journal of the American Chemical Society, 2014, 136, 9203-9210.	13.7	547
23	Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Organic Electronics, 2008, 9, 847-851.	2.6	527
24	Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 2313-2322.	2.6	469
25	Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2010, 1, 3046-3052.	4.6	468
26	Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy and Environmental Science, 2012, 5, 7626.	30.8	451
27	Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1645-1652.	4.6	430
28	Control of <i>I</i> i>â€" <i>V</i> Hysteresis in CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cell. Journal of Physical Chemistry Letters, 2015, 6, 4633-4639.	4.6	430
29	Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. ACS Nano, 2016, 10, 218-224.	14.6	427
30	Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor. Journal of the American Chemical Society, 2009, 131, 558-562.	13.7	424
31	Theory of the electrochemical impedance of anomalous diffusion. Journal of Electroanalytical Chemistry, 2001, 499, 112-120.	3 . 8	408
32	Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements. Journal of Physical Chemistry C, 2016, 120, 8023-8032.	3.1	407
33	Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2013, 135, 15913-15922.	13.7	400
34	Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. Journal of Electroanalytical Chemistry, 1998, 452, 229-234.	3.8	396
35	Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20, 295204.	2.6	383
36	A perspective on the production of dye-sensitized solar modules. Energy and Environmental Science, 2014, 7, 3952-3981.	30.8	381

#	Article	IF	CITATIONS
37	Cyclic Voltammetry Studies of Nanoporous Semiconductors. Capacitive and Reactive Properties of Nanocrystalline TiO2 Electrodes in Aqueous Electrolyte. Journal of Physical Chemistry B, 2003, 107, 758-768.	2.6	372
38	High Carrier Density and Capacitance in TiO ₂ Nanotube Arrays Induced by Electrochemical Doping. Journal of the American Chemical Society, 2008, 130, 11312-11316.	13.7	368
39	Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control. Journal of the American Chemical Society, 2015, 137, 5602-5609.	13.7	367
40	Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. Journal of Physical Chemistry Letters, 2016, 7, 5105-5113.	4.6	346
41	Quantum dot-sensitized solar cells. Chemical Society Reviews, 2018, 47, 7659-7702.	38.1	344
42	Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance. Relaxation of TiO2Nanoporous in Aqueous Solution. Journal of Physical Chemistry B, 2000, 104, 2287-2298.	2.6	335
43	Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 4693-4700.	4.6	335
44	CdSe Quantum Dot-Sensitized TiO ₂ Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment. Journal of Physical Chemistry C, 2009, 113, 4208-4214.	3.1	328
45	Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy. Solar Energy Materials and Solar Cells, 2010, 94, 366-375.	6.2	326
46	Simulation of Steady-State Characteristics of Dye-Sensitized Solar Cells and the Interpretation of the Diffusion Length. Journal of Physical Chemistry Letters, 2010, 1, 450-456.	4.6	301
47	Understanding the Role of Underlayers and Overlayers in Thin Film Hematite Photoanodes. Advanced Functional Materials, 2014, 24, 7681-7688.	14.9	289
48	Decoupling of Transport, Charge Storage, and Interfacial Charge Transfer in the Nanocrystalline TiO2/Electrolyte System by Impedance Methods. Journal of Physical Chemistry B, 2002, 106, 334-339.	2.6	285
49	lonic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1502246.	19.5	281
50	Determination of carrier density of ZnO nanowires by electrochemical techniques. Applied Physics Letters, 2006, 89, 203117.	3.3	277
51	A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorganica Chimica Acta, 2008, 361, 684-698.	2.4	276
52	Influence of the boundaries in the impedance of porous film electrodes. Physical Chemistry Chemical Physics, 2000, 2, 4185-4192.	2.8	267
53	Analysis of the Mechanisms of Electron Recombination in Nanoporous TiO2 Dye-Sensitized Solar Cells. Nonequilibrium Steady-State Statistics and Interfacial Electron Transfer via Surface States. Journal of Physical Chemistry B, 2002, 106, 8774-8782.	2.6	263
54	Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics. Journal of Physical Chemistry A, 2009, 113, 4015-4021.	2.5	255

#	Article	IF	CITATIONS
55	Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 6834-6839.	13.7	252
56	Light-Induced Space-Charge Accumulation Zone as Photovoltaic Mechanism in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 525-528.	4.6	243
57	Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities. Energy and Environmental Science, 2009, 2, 678.	30.8	241
58	Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells. ACS Nano, 2015, 9, 908-915.	14.6	241
59	Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology, 2008, 19, 424007.	2.6	237
60	Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion. Journal of Electroanalytical Chemistry, 1999, 475, 152-163.	3.8	228
61	Mott-Schottky Analysis of Nanoporous Semiconductor Electrodes in Dielectric State Deposited on SnO[sub 2](F) Conducting Substrates. Journal of the Electrochemical Society, 2003, 150, E293.	2.9	218
62	Implications of the Negative Capacitance Observed at Forward Bias in Nanocomposite and Polycrystalline Solar Cells. Nano Letters, 2006, 6, 640-650.	9.1	217
63	Physical electrochemistry of nanostructured devices. Physical Chemistry Chemical Physics, 2008, 10, 49-72.	2.8	210
64	Energy Band Alignment between Anatase and Rutile TiO ₂ . Journal of Physical Chemistry Letters, 2013, 4, 4182-4187.	4.6	210
65	Amorphous TiO ₂ Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%. Chemistry of Materials, 2015, 27, 8398-8405.	6.7	197
66	Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nature Communications, 2018, 9, 5113.	12.8	196
67	Anomalous transport effects in the impedance of porous film electrodes. Electrochemistry Communications, 1999, 1, 429-435.	4.7	195
68	The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. Journal of Applied Physics, 2004, 96, 6903-6907.	2.5	190
69	Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 1408-1413.	4.6	189
70	Tunable hysteresis effect for perovskite solar cells. Energy and Environmental Science, 2017, 10, 2383-2391.	30.8	188
71	Controlled Carbon Nitride Growth on Surfaces for Hydrogen Evolution Electrodes. Angewandte Chemie - International Edition, 2014, 53, 3654-3658.	13.8	187
72	Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells. Joule, 2018, 2, 788-798.	24.0	187

#	Article	IF	CITATIONS
73	Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment. Advanced Energy Materials, 2018, 8, 1702772.	19.5	186
74	Theory of Impedance and Capacitance Spectroscopy of Solar Cells with Dielectric Relaxation, Drift-Diffusion Transport, and Recombination. Journal of Physical Chemistry C, 2014, 118, 18983-18991.	3.1	185
75	Guanidinium thiocyanate selective Ostwald ripening induced large grain for high performance perovskite solar cells. Nano Energy, 2017, 41, 476-487.	16.0	184
76	Open-circuit voltage limit caused by recombination through tail states in bulk heterojunction polymer-fullerene solar cells. Applied Physics Letters, 2010, 96, 113301.	3.3	182
77	Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states. Physical Chemistry Chemical Physics, 2008, 10, 3175.	2.8	179
78	Hole Transport and Recombination in All-Solid Sb ₂ S ₃ -Sensitized TiO ₂ Solar Cells Using CuSCN As Hole Transporter. Journal of Physical Chemistry C, 2012, 116, 1579-1587.	3.1	175
79	From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells. ACS Nano, 2012, 6, 873-880.	14.6	170
80	Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%. Journal of Physical Chemistry Letters, 2016, 7, 3103-3111.	4.6	169
81	Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes. Chemical Physics Letters, 2006, 422, 184-191.	2.6	168
82	Electrical field profile and doping in planar lead halide perovskite solar cells. Applied Physics Letters, 2014, 105, .	3.3	168
83	Photovoltaic efficiency limits and material disorder. Energy and Environmental Science, 2012, 5, 6022.	30.8	166
84	Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Physics Reports, 2016, 653, 1-40.	25.6	166
85	Operating Modes of Sandwiched Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2011, 21, 1581-1586.	14.9	164
86	Interfacial band-edge energetics for solar fuels production. Energy and Environmental Science, 2015, 8, 2851-2862.	30.8	163
87	Chemical Diffusion Coefficient of Electrons in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 2323-2332.	2.6	158
88	Inverted Solution Processable OLEDs Using a Metal Oxide as an Electron Injection Contact Advanced Functional Materials, 2008, 18, 145-150.	14.9	158
89	Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 904-905.	17.4	158
90	Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells. Energy and Environmental Science, 2019, 12, 2054-2079.	30.8	158

#	Article	IF	Citations
91	Analysis of the kinetics of ion intercalation. Electrochimica Acta, 2002, 47, 2435-2449.	5.2	155
92	A Sulfide/Polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 20156-20159.	13.7	153
93	On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction Organic Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 1950-1964.	4.6	153
94	Dynamic Phenomena at Perovskite/Electron-Selective Contact Interface as Interpreted from Photovoltage Decays. CheM, 2016, 1, 776-789.	11.7	153
95	Realâ€Time Observation of Iodide Ion Migration in Methylammonium Lead Halide Perovskites. Small, 2017, 13, 1701711.	10.0	148
96	PEDOT Nanotube Arrays as High Performing Counter Electrodes for Dye Sensitized Solar Cells. Study of the Interactions Among Electrolytes and Counter Electrodes. Advanced Energy Materials, 2011 , 1 , $781-784$.	19.5	142
97	Surface Passivation of Nanoporous TiO ₂ via Atomic Layer Deposition of ZrO ₂ for Solid-State Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2009, 113, 18385-18390.	3.1	141
98	Influence of the Intermediate Density-of-States Occupancy on Open-Circuit Voltage of Bulk Heterojunction Solar Cells with Different Fullerene Acceptors. Journal of Physical Chemistry Letters, 2010, 1, 2566-2571.	4.6	140
99	Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process. Journal of Physical Chemistry Letters, 2011, 2, 3032-3035.	4.6	139
100	Fermi Level of Surface States in TiO2Nanoparticles. Nano Letters, 2003, 3, 945-949.	9.1	134
101	Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications. Journal of Physical Chemistry Letters, 2012, 3, 2517-2522.	4.6	134
102	Inductive Loop in the Impedance Response of Perovskite Solar Cells Explained by Surface Polarization Model. Journal of Physical Chemistry Letters, 2017, 8, 1402-1406.	4.6	129
103	Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst. Journal of Physical Chemistry C, 2013, 117, 3826-3833.	3.1	128
104	Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochimica Acta, 2002, 47, 3977-3988.	5.2	126
105	Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers. Energy and Environmental Science, 2010, 3, 1985.	30.8	125
106	Quantification of Ionic Diffusion in Lead Halide Perovskite Single Crystals. ACS Energy Letters, 2018, 3, 1477-1481.	17.4	123
107	Band unpinning and photovoltaic model for P3HT:PCBM organic bulk heterojunctions under illumination. Chemical Physics Letters, 2008, 465, 57-62.	2.6	122
108	Assessing Possibilities and Limits for Solar Cells. Advanced Materials, 2011, 23, 2870-2876.	21.0	122

#	Article	IF	Citations
109	Changes from Bulk to Surface Recombination Mechanisms between Pristine and Cycled Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 681-688.	17.4	122
110	Surface Polarization Model for the Dynamic Hysteresis of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 915-921.	4.6	122
111	Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 407-411.	4.6	121
112	Impedance Spectroscopy of Metal Halide Perovskite Solar Cells from the Perspective of Equivalent Circuits. Chemical Reviews, 2021, 121, 14430-14484.	47.7	121
113	Beyond the quasistatic approximation: Impedance and capacitance of an exponential distribution of traps. Physical Review B, 2008, 77, .	3.2	120
114	Quantification of the Effects of Recombination and Injection in the Performance of Dye-Sensitized Solar Cells Based on $\langle i \rangle N \langle i \rangle$ -Substituted Carbazole Dyes. Journal of Physical Chemistry C, 2010, 114, 19840-19848.	3.1	120
115	Cooperative kinetics of depolarization in CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Energy and Environmental Science, 2015, 8, 910-915.	30.8	116
116	How the Charge-Neutrality Level of Interface States Controls Energy Level Alignment in Cathode Contacts of Organic Bulk-Heterojunction Solar Cells. ACS Nano, 2012, 6, 3453-3460.	14.6	113
117	Elucidating Operating Modes of Bulk-Heterojunction Solar Cells from Impedance Spectroscopy Analysis. Journal of Physical Chemistry Letters, 2013, 4, 877-886.	4.6	112
118	Illumination Intensity Dependence of the Photovoltage in Nanostructured TiO2Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 15915-15926.	2.6	110
119	Impedance analysis of galvanostatically synthesized polypyrrole films. Correlation of ionic diffusion and capacitance parameters with the electrode morphology. Electrochimica Acta, 2002, 47, 4263-4272.	5.2	109
120	Design and characterization of alkoxy-wrapped push–pull porphyrins for dye-sensitized solar cells. Chemical Communications, 2012, 48, 4368.	4.1	108
121	Identifying charge and mass transfer resistances of an oxygen reducing biocathode. Energy and Environmental Science, 2011, 4, 5035.	30.8	107
122	Fluorine Treatment of TiO2 for Enhancing Quantum Dot Sensitized Solar Cell Performance. Journal of Physical Chemistry C, 2011, 115, 14400-14407.	3.1	105
123	Diffusion–Recombination Impedance Model for Solar Cells with Disorder and Nonlinear Recombination. ChemElectroChem, 2014, 1, 289-296.	3.4	105
124	Effect of humidity on the ac conductivity of nanoporous TiO[sub 2]. Journal of Applied Physics, 2003, 94, 5261.	2.5	103
125	Fractional Diffusion in the Multiple-Trapping Regime and Revision of the Equivalence with the Continuous-Time Random Walk. Physical Review Letters, 2003, 91, 010602.	7.8	103
126	Three-Channel Transmission Line Impedance Model for Mesoscopic Oxide Electrodes Functionalized with a Conductive Coating. Journal of Physical Chemistry B, 2006, 110, 11284-11290.	2.6	103

#	Article	IF	Citations
127	Classification of solar cells according to mechanisms of charge separation and charge collection. Physical Chemistry Chemical Physics, 2015, 17, 4007-4014.	2.8	102
128	Quantum Dot Based Heterostructures for Unassisted Photoelectrochemical Hydrogen Generation. Advanced Energy Materials, 2013, 3, 176-182.	19.5	101
129	Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes. Journal of Solid State Electrochemistry, 1999, 3, 337-347.	2.5	99
130	Nature of the Schottky-type barrier of highly dense SnO2 systems displaying nonohmic behavior. Journal of Applied Physics, 2000, 88, 6545-6548.	2.5	99
131	Chemical capacitance of nanoporous-nanocrystalline TiO2in a room temperature ionic liquid. Physical Chemistry Chemical Physics, 2006, 8, 1827-1833.	2.8	99
132	Photoanodes Based on Nanostructured WO ₃ for Water Splitting. ChemPhysChem, 2012, 13, 3025-3034.	2.1	99
133	Application of a distributed impedance model in the analysis of conducting polymer films. Electrochemistry Communications, 2000, 2, 601-605.	4.7	98
134	Electronic conductivity in nanostructured TiO2 films permeated with electrolyte. Physica Status Solidi A, 2003, 196, R4-R6.	1.7	97
135	Direct Correlation between Ultrafast Injection and Photoanode Performance in Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22352-22360.	3.1	97
136	Solar Fuels. Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2013, 117, 14873-14875.	3.1	97
137	Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 1519-1525.	4.6	96
138	Theory of the impedance of charge transfer via surface states in dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2010, 646, 43-51.	3.8	94
139	Charge transfer processes at the semiconductor/electrolyte interface for solar fuel production: insight from impedance spectroscopy. Journal of Materials Chemistry A, 2016, 4, 2873-2879.	10.3	94
140	Interfacial Mechanism for Efficient Resistive Switching in Ruddlesden–Popper Perovskites for Non-volatile Memories. Journal of Physical Chemistry Letters, 2020, 11, 463-470.	4.6	90
141	Photosensitization of TiO2Layers with CdSe Quantum Dots:  Correlation between Light Absorption and Photoinjection. Journal of Physical Chemistry C, 2007, 111, 14889-14892.	3.1	87
142	Tailoring Crystal Structure of FA _{0.83} Cs _{0.17} PbI ₃ Perovskite Through Guanidinium Doping for Enhanced Performance and Tunable Hysteresis of Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1806479.	14.9	87
143	A high-capacity Li[Ni _{0.8} Co _{0.06} Mn _{0.14}]O ₂ positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22183-22190.	10.3	84
144	Hopping Transport of Electrons in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 17163-17168.	3.1	83

#	Article	IF	Citations
145	Temperature Effects on the Photovoltaic Performance of Planar Structure Perovskite Solar Cells. Chemistry Letters, 2015, 44, 1557-1559.	1.3	83
146	Polymer/Perovskite Amplifying Waveguides for Active Hybrid Silicon Photonics. Advanced Materials, 2015, 27, 6157-6162.	21.0	83
147	Photovoltage Behavior in Perovskite Solar Cells under Light-Soaking Showing Photoinduced Interfacial Changes. ACS Energy Letters, 2017, 2, 950-956.	17.4	83
148	Progress in Perovskite Photocatalysis. ACS Energy Letters, 2020, 5, 2602-2604.	17.4	83
149	Influence of the Potassium Chloride Concentration on the Physical Properties of Electrodeposited ZnO Nanowire Arrays. Journal of Physical Chemistry C, 2008, 112, 16318-16323.	3.1	82
150	High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation. Nanoscale, 2015, 7, 5446-5456.	5.6	82
151	The Swift Surge of Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 2597-2598.	4.6	80
152	Porphyrin Dyes with High Injection and Low Recombination for Highly Efficient Mesoscopic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 10898-10902.	3.1	79
153	Distinction between Capacitive and Noncapacitive Hysteretic Currents in Operation and Degradation of Perovskite Solar Cells. ACS Energy Letters, 2016, $1,683-688$.	17.4	79
154	Exploring Graphene Quantum Dots/TiO2 interface in photoelectrochemical reactions: Solar to fuel conversion. Electrochimica Acta, 2016, 187, 249-255.	5.2	79
155	Suppressing H ₂ Evolution and Promoting Selective CO ₂ Electroreduction to CO at Low Overpotentials by Alloying Au with Pd. ACS Catalysis, 2019, 9, 3527-3536.	11.2	79
156	Photoelectrochemical Behavior of Nanostructured TiO2Thin-Film Electrodes in Contact with Aqueous Electrolytes Containing Dissolved Pollutants:Â A Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer from Photocurrent Measurements. Journal of Physical Chemistry B, 2005, 109, 3371-3380.	2.6	78
157	Interplay of Optical, Morphological, and Electronic Effects of ZnO Optical Spacers in Highly Efficient Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400805.	19.5	78
158	Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors. Physical Chemistry Chemical Physics, 2013, 15, 16456.	2.8	76
159	Beyond Impedance Spectroscopy of Perovskite Solar Cells: Insights from the Spectral Correlation of the Electrooptical Frequency Techniques. Journal of Physical Chemistry Letters, 2020, 11, 8654-8659.	4.6	76
160	Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 3414.	30.8	75
161	Effect of Energy Disorder in Interfacial Kinetics of Dye-Sensitized Solar Cells with Organic Hole Transport Material. Journal of Physical Chemistry B, 2006, 110, 19406-19411.	2.6	71
162	High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures. Journal of Physical Chemistry Letters, 2011, 2, 1984-1990.	4.6	71

#	Article	IF	Citations
163	Dilemmas of Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2011, 12, 1633-1636.	2.1	71
164	Electronic Effects Determine the Selectivity of Planar Au–Cu Bimetallic Thin Films for Electrochemical CO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 16546-16555.	8.0	71
165	Dynamics of Charge Separation and Trap-Limited Electron Transport in TiO ₂ Nanostructures. Journal of Physical Chemistry C, 2007, 111, 13997-14000.	3.1	70
166	Flatband Potential of F:SnO2in a TiO2Dye-Sensitized Solar Cell: An Interference Reflection Study. Journal of Physical Chemistry B, 2003, 107, 9397-9403.	2.6	69
167	Electrodeposition and impedance spectroscopy characterization of ZnO nanowire arrays. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2345-2350.	1.8	69
168	Interpretation of Cyclic Voltammetry Measurements of Thin Semiconductor Films for Solar Fuel Applications. Journal of Physical Chemistry Letters, 2013, 4, 1334-1339.	4.6	69
169	Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochimica Acta, 2005, 51, 627-640.	5.2	68
170	Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illumination. Journal of Applied Physics, 2009, 106, .	2.5	68
171	Currentâ€Voltage Characteristics of Bulk Heterojunction Organic Solar Cells: Connection Between Light and Dark Curves. Advanced Energy Materials, 2011, 1, 1073-1078.	19.5	67
172	Recombination rates in heterojunction silicon solar cells analyzed by impedance spectroscopy at forward bias and under illumination. Solar Energy Materials and Solar Cells, 2008, 92, 505-509.	6.2	66
173	Determination of the Electron Diffusion Length in Dye-Sensitized Solar Cells by Random Walk Simulation: Compensation Effects and Voltage Dependence. Journal of Physical Chemistry C, 2010, 114, 8552-8558.	3.1	66
174	Enhanced Carrier Transport Distance in Colloidal PbS Quantum-Dot-Based Solar Cells Using ZnO Nanowires. Journal of Physical Chemistry C, 2015, 119, 27265-27274.	3.1	65
175	The quantum relativistic harmonic oscillator: generalized Hermite polynomials. Physics Letters, Section A: General, Atomic and Solid State Physics, 1991, 156, 381-385.	2.1	62
176	Observation of Diffusion and Tunneling Recombination of Dye-Photoinjected Electrons in Ultrathin TiO2Layers by Surface Photovoltage Transients. Journal of Physical Chemistry B, 2005, 109, 14932-14938.	2.6	62
177	Determination of electron and hole energy levels in mesoporous nanocrystalline TiO2 solid-state dye solar cell. Synthetic Metals, 2006, 156, 944-948.	3.9	62
178	Probing Lithiation Kinetics of Carbon-Coated ZnFe ₂ O ₄ Nanoparticle Battery Anodes. Journal of Physical Chemistry C, 2014, 118, 6069-6076.	3.1	62
179	Tunable Open Circuit Voltage by Engineering Inorganic Cesium Lead Bromide/Iodide Perovskite Solar Cells. Scientific Reports, 2018, 8, 2482.	3.3	62
180	Energy Diagram of Semiconductor/Electrolyte Junctions. Journal of Physical Chemistry Letters, 2014, 5, 205-207.	4.6	61

#	Article	IF	CITATIONS
181	Toward Stable Solar Hydrogen Generation Using Organic Photoelectrochemical Cells. Journal of Physical Chemistry C, 2015, 119, 6488-6494.	3.1	61
182	Overcoming Charge Collection Limitation at Solid/Liquid Interface by a Controllable Crystal Deficient Overlayer. Advanced Energy Materials, 2017, 7, 1600923.	19.5	61
183	Perovskite Solar Cell Modeling Using Light- and Voltage-Modulated Techniques. Journal of Physical Chemistry C, 2019, 123, 6444-6449.	3.1	61
184	New iridium complex as additive to the spiro-OMeTAD in perovskite solar cells with enhanced stability. APL Materials, 2014 , 2 , .	5.1	60
185	Impedance spectroscopy study of dye-sensitized solar cells with undoped spiro-OMeTAD as hole conductor. Journal of Applied Physics, 2006, 100, 034510.	2.5	59
186	Nanoscale Interaction Between CdSe or CdTe Nanocrystals and Molecular Dyes Fostering or Hindering Directional Charge Separation. Small, 2010, 6, 221-225.	10.0	59
187	Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 3099-3104.	4.6	59
188	Separation of transport, charge storage and reaction processes of porous electrocatalytic IrO2 and IrO2/Nb2O5 electrodes. Journal of Electroanalytical Chemistry, 2001, 508, 59-69.	3.8	58
189	Near-IR sensitization of wide band gap oxide semiconductor by axially anchored Si-naphthalocyanines. Energy and Environmental Science, 2009, 2, 529.	30.8	57
190	Determination of spatial charge separation of diffusing electrons by transient photovoltage measurements. Journal of Applied Physics, 2006, 100, 103705.	2.5	56
191	Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics. Nature Communications, 2013, 4, 2272.	12.8	56
192	Calculation of the Energy Band Diagram of a Photoelectrochemical Water Splitting Cell. Journal of Physical Chemistry C, 2014, 118, 29599-29607.	3.1	56
193	Chemical Effects of Tin Oxide Nanoparticles in Polymer Electrolytes-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16510-16517.	3.1	56
194	Effects of the Gaussian energy dispersion on the statistics of polarons and bipolarons in conducting polymers. Journal of Chemical Physics, 2004, 120, 6726-6733.	3.0	55
195	Random walk numerical simulation for hopping transport at finite carrier concentrations: diffusion coefficient and transport energy concept. Physical Chemistry Chemical Physics, 2009, 11, 10359.	2.8	55
196	Organic photoelectrochemical cells with quantitative photocarrier conversion. Energy and Environmental Science, 2014, 7, 3666-3673.	30.8	55
197	An Explanation of Anomalous Diffusion Patterns Observed in Electroactive Materials by Impedance Methods. ChemPhysChem, 2003, 4, 287-292.	2.1	54
198	Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. Journal of Electroanalytical Chemistry, 2012, 668, 119-125.	3.8	54

#	Article	IF	Citations
199	Potassium ions as a kinetic controller in ionic double layers for hysteresis-free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18807-18815.	10.3	54
200	Analysis of the admittance-frequency and capacitance–voltage of dense SnO2â‹CoO-based varistor ceramics. Journal of Applied Physics, 2002, 91, 6007-6014.	2.5	53
201	Electrochemical impedance spectra for the complete equivalent circuit of diffusion and reaction under steady-state recombination current. Physical Chemistry Chemical Physics, 2004, 6, 2983-2988.	2.8	53
202	Temperature dependent normal and anomalous electron diffusion in porousTiO2studied by transient surface photovoltage. Physical Review B, 2006, 73, .	3.2	53
203	Substitution of a hydroxamic acid anchor into the MK-2 dye for enhanced photovoltaic performance and water stability in a DSSC. Physical Chemistry Chemical Physics, 2014, 16, 16629-16641.	2.8	53
204	Hydrazine sensors development based on a glassy carbon electrode modified with a nanostructured TiO2 films by electrochemical approach. Mikrochimica Acta, 2017, 184, 2123-2129.	5.0	53
205	Toward Highâ€Temperature Stability of PTB7â€Based Bulk Heterojunction Solar Cells: Impact of Fullerene Size and Solvent Additive. Advanced Energy Materials, 2017, 7, 1601486.	19.5	53
206	Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation. Physical Chemistry Chemical Physics, 2008, 10, 4478.	2.8	52
207	A variable series resistance mechanism to explain the negative capacitance observed in impedance spectroscopy measurements of nanostructured solar cells. Physical Chemistry Chemical Physics, 2011, 13, 4679.	2.8	52
208	Intensity-Modulated Photocurrent Spectroscopy and Its Application to Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 24995-25014.	3.1	52
209	Properties of the electronic density of states in TiO2 nanoparticles surrounded with aqueous electrolyte. Journal of Solid State Electrochemistry, 2007, 11, 647-653.	2.5	50
210	Porosity dependence of electron percolation in nanoporous TiO2 layers. Journal of Chemical Physics, 2008, 128, 064703.	3.0	50
211	Large improvement of electron extraction from CdSe quantum dots into a TiO2 thin layer by N3 dye coabsorption. Thin Solid Films, 2008, 516, 6994-6998.	1.8	49
212	Temperature dependence of open-circuit voltage and recombination processes in polymer–fullerene based solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 2131-2135.	6.2	49
213	Chemical Inductor. Journal of the American Chemical Society, 2022, 144, 5996-6009.	13.7	49
214	Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. Chemical Communications, 2013, 49, 2810.	4.1	48
215	Combinatorial Investigation and Modelling of MoO ₃ Holeâ€6elective Contact in TiO ₂ Co ₃ O ₄ MoO ₃ Allâ€Oxide Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500405.	3.7	48
216	Trap-limited mobility in space-charge limited current in organic layers. Organic Electronics, 2009, 10, 305-312.	2.6	47

#	Article	IF	CITATIONS
217	Photocurrent enhancement in dye-sensitized photovoltaic devices with titania–graphene composite electrodes. Journal of Electroanalytical Chemistry, 2012, 683, 43-46.	3.8	47
218	Physical Model for the Current–Voltage Hysteresis and Impedance of Halide Perovskite Memristors. ACS Energy Letters, 2022, 7, 1214-1222.	17.4	47
219	Diffusion-Recombination Determines Collected Current and Voltage in Polymer:Fullerene Solar Cells. Journal of Physical Chemistry C, 2012, 116, 16925-16933.	3.1	46
220	Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes. Journal of Power Sources, 2014, 268, 397-403.	7.8	46
221	Switching Off Hysteresis in Perovskite Solar Cells by Fineâ€Tuning Energy Levels of Extraction Layers. Advanced Energy Materials, 2018, 8, 1703376.	19.5	46
222	Dynamic Processes in the Coloration of WO[sub 3] by Lithium Insertion. Journal of the Electrochemical Society, 2001, 148, E302.	2.9	45
223	Capacitance, spectroelectrochemistry and conductivity of polarons and bipolarons in a polydicarbazole based conducting polymer. Journal of Electroanalytical Chemistry, 2008, 614, 49-60.	3.8	45
224	Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires. Physical Chemistry Chemical Physics, 2011, 13, 7162.	2.8	45
225	Sb ₂ S ₃ -Sensitized Photoelectrochemical Cells: Open Circuit Voltage Enhancement through the Introduction of Poly-3-hexylthiophene Interlayer. Journal of Physical Chemistry C, 2012, 116, 20717-20721.	3.1	45
226	Effects of Ion Distributions on Charge Collection in Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1450-1453.	17.4	45
227	Investigating the Consistency of Models for Water Splitting Systems by Light and Voltage Modulated Techniques. Journal of Physical Chemistry Letters, 2017, 8, 172-180.	4.6	45
228	The trap-limited diffusivity of electrons in nanoporous semiconductor networks permeated with a conductive phase. Applied Physics A: Materials Science and Processing, 2003, 77, 507-514.	2.3	44
229	Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination. Physical Review E, 2005, 72, 011109.	2.1	44
230	Charge transfer kinetics in CdSe quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12, 2819.	2.8	44
231	Enhancing the Optical Absorption and Interfacial Properties of BiVO ₄ with Ag ₃ PO ₄ Nanoparticles for Efficient Water Splitting. Journal of Physical Chemistry C, 2018, 122, 11608-11615.	3.1	44
232	Switching behaviour in lightly doped polymeric porous film electrodes. Improving distributed impedance models for mixed conduction conditions. Journal of Electroanalytical Chemistry, 2001, 508, 48-58.	3.8	43
233	Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2 Electrodes. Journal of Physical Chemistry C, 2010, 114, 6755-6761.	3.1	43
234	Properties of Chromophores Determining Recombination at the TiO ₂ â€"Dyeâ€"Electrolyte Interface. Langmuir, 2013, 29, 8773-8781.	3.5	43

#	Article	IF	Citations
235	The two sides of solar energy. Nature Photonics, 2008, 2, 648-649.	31.4	42
236	Energy transfer versus charge separation in hybrid systems of semiconductor quantum dots and Ru-dyes as potential co-sensitizers of TiO2-based solar cells. Journal of Applied Physics, 2011, 110, .	2.5	42
237	Relaxation of Electron Carriers in the Density of States of Nanocrystalline TiO ₂ . Journal of Physical Chemistry Letters, 2014, 5, 689-694.	4.6	42
238	Cooperative Catalytic Effect of ZrO ₂ and αâ€Fe ₂ O ₃ Nanoparticles on BiVO ₄ Photoanodes for Enhanced Photoelectrochemical Water Splitting. ChemSusChem, 2016, 9, 2779-2783.	6.8	42
239	Understanding the Improvement in the Stability of a Self-Assembled Multiple-Quantum Well Perovskite Light-Emitting Diode. Journal of Physical Chemistry Letters, 2019, 10, 6857-6864.	4.6	42
240	Capacitance-voltage characteristics of organic light-emitting diodes varying the cathode metal: Implications for interfacial states. Physical Review B, 2007, 75, .	3.2	41
241	Understanding the synergistic effect of WO3–BiVO4 heterostructures by impedance spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 9255-9261.	2.8	41
242	Nanostructured Energy Devices., 0,,.		40
243	Ionic Effect Enhances Light Emission and the Photovoltage of Methylammonium Lead Bromide Perovskite Solar Cells by Reduced Surface Recombination. ACS Energy Letters, 2019, 4, 741-746.	17.4	39
244	SiO2 Aerogel Templated, Porous TiO2 Photoanodes for Enhanced Performance in Dye-Sensitized Solar Cells Containing a Ni(III)/(IV) Bis(dicarbollide) Shuttle. Journal of Physical Chemistry C, 2011, 115, 11257-11264.	3.1	38
245	Advances and Obstacles on Perovskite Solar Cell Research from Material Properties to Photovoltaic Function. ACS Energy Letters, 2017, 2, 520-523.	17.4	38
246	Joint Photophysical and Electrical Analyses on the Influence of Conjugation Order in D-Ï€-A Photosensitizers of Mesoscopic Titania Solar Cells. Journal of Physical Chemistry C, 2011, 115, 14425-14430.	3.1	37
247	Interpretation of Diffusion and Recombination in Nanostructured and Energy-Disordered Materials by Stochastic Quasiequilibrium Simulation. Journal of Physical Chemistry C, 2013, 117, 16275-16289.	3.1	37
248	Photon Up-Conversion with Lanthanide-Doped Oxide Particles for Solar H ₂ Generation. Journal of Physical Chemistry C, 2014, 118, 11279-11284.	3.1	37
249	Perovskite semiconductors for photoelectrochemical water splitting applications. Current Opinion in Electrochemistry, 2017, 2, 144-147.	4.8	37
250	Doping saturation in dye-sensitized solar cells based on ZnO:Ga nanostructured photoanodes. Electrochimica Acta, 2011, 56, 6503-6509.	5.2	36
251	Air-stable and efficient inorganic–organic heterojunction solar cells using PbS colloidal quantum dots co-capped by 1-dodecanethiol and oleic acid. Physical Chemistry Chemical Physics, 2012, 14, 14999.	2.8	36
252	Interpretation of AC Conductivity of Lightly Doped Conducting Polymers in Terms of Hopping Conduction. Russian Journal of Electrochemistry, 2004, 40, 352-358.	0.9	35

#	Article	IF	CITATIONS
253	Bandgap Modulation in Efficient <i>n</i> à€Thiophene Absorbers for Dye Solar Cell Sensitization. ChemPhysChem, 2010, 11, 245-250.	2.1	35
254	The combination of a polymer–carbon composite electrode with a high-absorptivity ruthenium dye achieves an efficient dye-sensitized solar cell based on a thiolate–disulfide redox couple. Physical Chemistry Chemical Physics, 2012, 14, 7131.	2.8	35
255	Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit. ACS Physical Chemistry Au, 2021, 1, 25-44.	4.0	35
256	Internal Reference Electrode in Dye Sensitized Solar Cells for Three-Electrode Electrochemical Characterizations. Journal of Physical Chemistry B, 2003, 107, 6022-6025.	2.6	34
257	Relaxation processes in the coloration of amorphous WO3 thin films studied by combined impedance and electro-optical measurements. Journal of Applied Physics, 2004, 96, 853-859.	2.5	34
258	Dye sensitized solar cells using non-aggregated silicon phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1004-1010.	0.8	34
259	Impedance spectroscopy of perovskite/contact interface: Beneficial chemical reactivity effect. Journal of Chemical Physics, 2019, 151, 124201.	3.0	34
260	From Frequency Domain to Time Transient Methods for Halide Perovskite Solar Cells: The Connections of IMPS, IMVS, TPC, and TPV. Journal of Physical Chemistry Letters, 2021, 12, 7964-7971.	4.6	34
261	Localized versus delocalized states: Photoluminescence from electrochemically synthesized ZnO nanowires. Journal of Applied Physics, 2009, 106, 054304.	2.5	33
262	Triplication of the Photocurrent in Dye Solar Cells by Increasing the Elongation of the Ï€â€conjugation in Znâ€Porphyrin Sensitizers. ChemPhysChem, 2011, 12, 961-965.	2.1	33
263	Recombination in Organic Bulk Heterojunction Solar Cells: Small Dependence of Interfacial Charge Transfer Kinetics on Fullerene Affinity. Journal of Physical Chemistry Letters, 2012, 3, 1386-1392.	4.6	33
264	Spectral properties of the dynamic state transition in metal halide perovskite-based memristor exhibiting negative capacitance. Applied Physics Letters, 2021, 118, .	3 . 3	33
265	Effect of trap density on the dielectric response of varistor ceramics. Solid-State Electronics, 1999, 43, 2123-2127.	1.4	32
266	Interfacial engineering of quantum dot-sensitized TiO2 fibrous electrodes for futuristic photoanodes in photovoltaic applications. Journal of Materials Chemistry, 2012, 22, 14228.	6.7	32
267	Shelf Life Degradation of Bulk Heterojunction Solar Cells: Intrinsic Evolution of Charge Transfer Complex. Advanced Energy Materials, 2015, 5, 1401997.	19.5	32
268	Impedance Spectroscopy Dynamics of Biological Neural Elements: From Memristors to Neurons and Synapses. Journal of Physical Chemistry B, 2021, 125, 9934-9949.	2.6	32
269	Effect of buffer layer on minority carrier lifetime and series resistance of bifacial heterojunction silicon solar cells analyzed by impedance spectroscopy. Thin Solid Films, 2006, 514, 254-257.	1.8	31
270	Germanium coating boosts lithium uptake in Si nanotube battery anodes. Physical Chemistry Chemical Physics, 2014, 16, 17930.	2.8	31

#	Article	IF	Citations
271	Interpretation of trap-limited mobility in space-charge limited current in organic layers with exponential density of traps. Journal of Applied Physics, 2011, 110, .	2.5	30
272	Surface Modification of TiO ₂ Photoanodes with Fluorinated Self-Assembled Monolayers for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 25741-25747.	8.0	29
273	Determination of density of electronic states using the potential dependence of electron density measured at nonzero temperatures. Physical Review B, 2004, 70, .	3.2	28
274	Theory of Impedance Spectroscopy of Ambipolar Solar Cells with Trap-Mediated Recombination. Journal of Physical Chemistry C, 2014, 118, 16574-16580.	3.1	28
275	Extracting <i>in Situ</i> Charge Carrier Diffusion Parameters in Perovskite Solar Cells with Light Modulated Techniques. ACS Energy Letters, 2021, 6, 2248-2255.	17.4	28
276	Relaxation of Photogenerated Carriers in P3HT:PCBM Organic Blends. ChemSusChem, 2009, 2, 314-320.	6.8	27
277	Amorphous Iron Oxyhydroxide Nanosheets: Synthesis, Li Storage, and Conversion Reaction Kinetics. Journal of Physical Chemistry C, 2013, 117, 17462-17469.	3.1	27
278	Limitation of the mobility of charge carriers in a nanoscaled heterogeneous system by dynamical Coulomb screening. Physical Review B, 2003, 68, .	3.2	26
279	Analysis of cyclic voltammograms of electrochromic a-WO3 films from voltage-dependent equilibrium capacitance measurements. Journal of Electroanalytical Chemistry, 2004, 565, 329-334.	3.8	26
280	Device Modeling of Dye-Sensitized Solar Cells. Topics in Current Chemistry, 2013, 352, 325-395.	4.0	26
281	The Physics of Solar Cells., 0,,.		26
282	Hopf bifurcations in electrochemical, neuronal, and semiconductor systems analysis by impedance spectroscopy. Applied Physics Reviews, 2022, 9, .	11.3	26
283	Dynamic Instability and Time Domain Response of a Model Halide Perovskite Memristor for Artificial Neurons. Journal of Physical Chemistry Letters, 2022, 13, 3789-3795.	4.6	26
284	Symmetry and quantization: Higherâ€order polarization and anomalies. Journal of Mathematical Physics, 1992, 33, 3087-3097.	1.1	25
285	Anomalous transport on polymeric porous film electrodes in the dopant-induced insulator-to-conductor transition analyzed by electrochemical impedance. Applied Physics Letters, 2001, 78, 1885-1887.	3.3	25
286	Analysis of ion diffusion and charging in electronically conducting polydicarbazole films by impedance methods. Electrochimica Acta, 2004, 49, 3413-3417.	5.2	25
287	Interpretation of variations of jump diffusion coefficient of lithium intercalated into amorphous WO3 electrochromic films. Solid State Ionics, 2004, 170, 123-127.	2.7	25
288	Dynamic behaviour of viologen-activated nanostructured TiO2: correlation between kinetics of charging and coloration. Electrochimica Acta, 2004, 49, 745-752.	5.2	25

#	Article	IF	Citations
289	Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity. Organic Electronics, 2015, 16, 227-233.	2.6	25
290	Plasmon-enhanced photocurrent in quasi-solid-state dye-sensitized solar cells by the inclusion of gold/silica core–shell nanoparticles in a TiO2 photoanode. Journal of Materials Chemistry A, 2013, 1, 12627.	10.3	24
291	Origin of high open-circuit voltage in solid state dye-sensitized solar cells employing polymer electrolyte. Nano Energy, 2016, 28, 455-461.	16.0	24
292	TiO ₂ Nanotubes for Solar Water Splitting: Vacuum Annealing and Zr Doping Enhance Water Oxidation Kinetics. ACS Omega, 2019, 4, 16095-16102.	3.5	24
293	Interpretation of Mott–Schottky plots of photoanodes for water splitting. Chemical Science, 2022, 13, 4828-4837.	7.4	24
294	Determination of the electronic conductivity of polybithiophene films at different doping levels using in situ electrochemical impedance measurements. Applied Physics Letters, 2003, 83, 2178-2180.	3.3	23
295	Master equation approach to the non-equilibrium negative specific heat at the glass transition. American Journal of Physics, 2005, 73, 735-741.	0.7	23
296	Thickness scaling of space-charge-limited currents in organic layers with field- or density-dependent mobility. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3762-3767.	1.8	23
297	Intensity-Modulated Photocurrent Spectroscopy for Solar Energy Conversion Devices: What Does a Negative Value Mean?. ACS Energy Letters, 2020, 5, 187-191.	17.4	23
298	Comment on "Diffusion Impedance and Space Charge Capacitance in the Nanoporous Dye-Sensitized Electrochemical Solar Cell―and "Electronic Transport in Dye-Sensitized Nanoporous TiO2Solar CellsComparison of Electrolyte and Solid-State Devices― Journal of Physical Chemistry B, 2003, 107, 13541-13543.	2.6	22
299	Dielectric relaxation strength in ion conducting glasses caused by cluster polarization. Chemical Physics, 2006, 330, 113-117.	1.9	22
300	Surgical site infection due to Aeromonas species: Report of nine cases and literature review. Scandinavian Journal of Infectious Diseases, 2009, 41, 164-170.	1.5	22
301	Influence of cysteine adsorption on the performance of CdSe quantum dots sensitized solar cells. Materials Chemistry and Physics, 2010, 124, 709-712.	4.0	22
302	Enhanced diffusion through porous nanoparticle optical multilayers. Journal of Materials Chemistry, 2012, 22, 1751-1757.	6.7	22
303	Co ₃ O ₄ Based All-Oxide PV: A Numerical Simulation Analyzed Combinatorial Material Science Study. Journal of Physical Chemistry C, 2016, 120, 9053-9060.	3.1	22
304	Crystalline Clear or Not: Beneficial and Harmful Effects of Water in Perovskite Solar Cells. ChemPhysChem, 2019, 20, 2587-2599.	2.1	22
305	Negative Transient Spikes in Halide Perovskites. ACS Energy Letters, 2022, 7, 2602-2610.	17.4	22
306	Charging and diffusional aspects of Li+ insertion in electrochromic a-WO3. Solid State Ionics, 2004, 175, 521-525.	2.7	21

#	Article	IF	CITATIONS
307	Impedance of space-charge-limited currents in organic light-emitting diodes with double injection and strong recombination. Journal of Applied Physics, 2006, 100, 084502.	2.5	21
308	Inductive and Capacitive Hysteresis of Halide Perovskite Solar Cells and Memristors Under Illumination. Frontiers in Energy Research, 0, 10, .	2.3	21
309	Injection and Recombination in Dye-Sensitized Solar Cells with a Broadband Absorbance Metal-Free Sensitizer Based on Oligothienylvinylene. Journal of Physical Chemistry C, 2008, 112, 18623-18627.	3.1	20
310	Analysis of the Influence of Selective Contact Heterojunctions on the Performance of Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 13920-13925.	3.1	20
311	Insight into Photon Recycling in Perovskite Semiconductors from the Concept of Photon Diffusion. Physical Review Applied, 2018, 10, .	3.8	20
312	Perimeter leakage current in polymer light emitting diodes. Current Applied Physics, 2009, 9, 414-416.	2.4	19
313	Doping-induced broadening of the hole density-of-states in conducting polymers. Electrochimica Acta, 2010, 55, 6123-6127.	5.2	19
314	Trap origin of field-dependent mobility of the carrier transport in organic layers. Solid-State Electronics, 2011, 55, 1-4.	1.4	19
315	High-Efficiency Lead-Free Wide Band Gap Perovskite Solar Cells via Guanidinium Bromide Incorporation. ACS Applied Energy Materials, 2021, 4, 5615-5624.	5.1	19
316	The Physics of Solar Energy Conversion. , 0, , .		18
317	A Frequency Domain Analysis of the Excitability and Bifurcations of the FitzHugh–Nagumo Neuron Model. Journal of Physical Chemistry Letters, 2021, 12, 11005-11013.	4.6	18
318	Comparative activities of daptomycin and several agents against staphylococcal blood isolates. Glycopeptide tolerance. Diagnostic Microbiology and Infectious Disease, 2011, 70, 373-379.	1.8	17
319	Mobile cation concentration in ionically conducting glasses calculated by means of Mott–Schottky capacitance–voltage characteristics. Journal of Non-Crystalline Solids, 2003, 324, 196-200.	3.1	16
320	Modulating the interaction between gold and TiO ₂ nanowires for enhanced solar driven photoelectrocatalytic hydrogen generation. Physical Chemistry Chemical Physics, 2015, 17, 19371-19378.	2.8	16
321	Highâ€Efficiency Digital Inkjetâ€Printed Nonâ€Fullerene Polymer Blends Using Nonâ€Halogenated Solvents. Advanced Energy and Sustainability Research, 2021, 2, 2000086.	5.8	16
322	Interpretation of capacitance spectra and transit times of single carrier space-charge limited transport in organic layers with field-dependent mobility. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2402-2410.	1.8	15
323	Charge separation in organic photovoltaic cells. Organic Electronics, 2014, 15, 1043-1049.	2.6	15
324	Triumphing over Charge Transfer Limitations of PEDOT Nanofiber Reduction Catalyst by 1,2-Ethanedithiol Doping for Quantum Dot Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1877-1884.	8.0	15

#	Article	IF	CITATIONS
325	Impedance spectroscopy studies of orthorhombic FeNbO4. Journal of Materials Science, 1996, 31, 2043-2046.	3.7	14
326	Grain boundary role in the electrical properties of La1â^'xSrxCo0.8Fe0.2O3â^'Î' perovskites. Solid State lonics, 1998, 107, 203-211.	2.7	14
327	Frequency dispersion in electrochromic devices and conducting polymer electrodes: A generalized transmission line approach. Ionics, 1999, 5, 44-51.	2.4	14
328	Correlation between Volume Change and Cell Voltage Variation with Composition for Lithium Intercalated Amorphous Films. Journal of Physical Chemistry B, 2006, 110, 4514-4518.	2.6	14
329	Dynamics on SL(2,R)tilde-(X)U(1). Journal of Physics A, 1990, 23, 707-720.	1.6	13
330	Analysis of the power-law response in the fractal dielectric model by thermally stimulated currents and frequency spectroscopy. Journal of Applied Physics, 2001, 89, 5657-5662.	2.5	13
331	Composition Dependence of the Energy Barrier for Lithium Diffusion in Amorphous WO[sub 3]. Electrochemical and Solid-State Letters, 2005, 8, J21.	2.2	13
332	Continuous time random walk simulation of short-range electron transport in TiO2 layers compared with transient surface photovoltage measurements. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 280-287.	3.9	13
333	Impedance of carrier injection at the metal–organic interface mediated by surface states in electron-only tris(8-hydroxyquinoline) aluminium (Alq3) thin layers. Chemical Physics Letters, 2008, 455, 242-248.	2.6	13
334	Kinetics of interface state-limited hole injection in α-naphthylphenylbiphenyl diamine (α-NPD) thin layers. Synthetic Metals, 2009, 159, 480-486.	3.9	13
335	Molecular Electronic Coupling Controls Charge Recombination Kinetics in Organic Solar Cells of Low Bandgap Diketopyrrolopyrrole, Carbazole, and Thiophene Polymers. Journal of Physical Chemistry C, 2013, 117, 8719-8726.	3.1	13
336	Electron-Transfer Kinetics through Interfaces between Electron-Transport and Ion-Transport Layers in Solid-State Dye-Sensitized Solar Cells Utilizing Solid Polymer Electrolyte. Journal of Physical Chemistry C, 2016, 120, 2494-2500.	3.1	13
337	Photocurrents in crystalâ€amorphous hybrid stannous oxide/alumina binary nanofibers. Journal of the American Ceramic Society, 2019, 102, 6337-6348.	3.8	13
338	Removing Instability-Caused Low-Frequency Features in Small Perturbation Spectra of Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 15793-15799.	3.1	13
339	An experiment on magnetic induction pulses. American Journal of Physics, 1994, 62, 702-706.	0.7	12
340	The effect of the cooling rate on the fictive temperature in some model glassy systems. Journal of Chemical Physics, 2001, 114, 9512-9517.	3.0	12
341	Calculation of electronic density of states induced by impurities inTiO2quantum dots. Physical Review B, 2005, 72, .	3.2	12
342	Enhancing the Electronic Properties and Stability of High-Efficiency Tin–Lead Mixed Halide Perovskite Solar Cells via Doping Engineering. Journal of Physical Chemistry Letters, 2022, 13, 3130-3137.	4.6	12

#	Article	IF	Citations
343	Entropy factor in the hopping frequency for ionic conduction in oxide glasses induced by energetic clustering. Journal of Chemical Physics, 2005, 123, 074504.	3.0	11
344	Experimental Evidence of a UV Light-Induced Long-Range Electric Field in Nanostructured TiO2Thin Films in Contact with Aqueous Electrolytes. Journal of Physical Chemistry B, 2005, 109, 10355-10361.	2.6	11
345	Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations. Physical Chemistry Chemical Physics, 2014, 16, 4082.	2.8	11
346	In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI ₃ Phase Evolution Portfolio. Journal of Physical Chemistry C, 2020, 124, 8008-8014.	3.1	11
347	Unprecedented solar water splitting of dendritic nanostructured Bi2O3 films by combined oxygen vacancy formation and Na2MoO4 doping. International Journal of Hydrogen Energy, 2021, 46, 23702-23714.	7.1	11
348	Complex plane analysis of pn junction forward-voltage impedance. Electronics Letters, 1997, 33, 900.	1.0	10
349	Determination of the humidity of soil by monitoring the conductivity with indium tin oxide glass electrodes. Applied Physics Letters, 2002, 80, 2785-2787.	3.3	10
350	Locating the Frequency of Turnover in Thin-Film Diffusion Impedance. Journal of Physical Chemistry C, 2021, 125, 15737-15741.	3.1	10
351	Oscillations of a dipole in a magnetic field: An experiment. American Journal of Physics, 1990, 58, 838-843.	0.7	9
352	Study of the humidity effect in the electrical response of the KSbMoO6 ionic conductive ceramic at low temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 90, 291-295.	3.5	9
353	Interpretation of the critical length scale determining the conductivity in ionically conducting silicate glasses. Journal of Non-Crystalline Solids, 2004, 337, 272-275.	3.1	9
354	A simple model of entropy relaxation for explaining effective activation energy behavior below the glass transition temperature. Journal of Chemical Physics, 2005, 122, 094507.	3.0	9
355	Millisecond radiative recombination in poly(phenylene vinylene)-based light-emitting diodes from transient electroluminescence. Journal of Applied Physics, 2007, 101, 114506.	2.5	9
356	The effect of ion-polymer binding on ionic diffusion in dicarbazole-based conducting polymers. Electrochimica Acta, 2007, 52, 6841-6847.	5.2	9
357	Features of Capacitance and Mobility of Injected Carriers in Organic Layers Measured by Impedance Spectroscopy. Israel Journal of Chemistry, 2012, 52, 519-528.	2.3	9
358	Analysis of Photoelectrochemical Systems by Impedance Spectroscopy., 2016,, 281-321.		9
359	Impedance Characteristics of Hybrid Organometal Halide Perovskite Solar Cells., 2016, , 163-199.		9
360	Imidazolium Iodide-Doped PEDOT Nanofibers as Conductive Catalysts for Highly Efficient Solid-State Dye-Sensitized Solar Cells Employing Polymer Electrolyte. ACS Applied Materials & Employing Polymer Electrolyte. ACS Applied Materia	8.0	9

#	Article	IF	Citations
361	Interfacial Passivation of Perovskite Solar Cells by Reactive Ion Scavengers. ACS Applied Energy Materials, 2021, 4, 1078-1084.	5.1	9
362	Unique Curve for the Radiative Photovoltage Deficit Caused by the Urbach Tail. Journal of Physical Chemistry Letters, 2021, 12, 7840-7845.	4.6	9
363	Characterization of Capacitance, Transport and Recombination Parameters in Hybrid Perovskite and Organic Solar Cells. RSC Energy and Environment Series, 2016, , 57-106.	0.5	9
364	The small signal AC impedance of a short p–n junction diode. Solid-State Electronics, 1998, 42, 939-941.	1.4	8
365	Scaling properties of thermally stimulated currents in disordered systems. Journal of Non-Crystalline Solids, 1999, 260, 109-115.	3.1	8
366	Anomalous diffusion of defects in rutile-titanium dioxide: correlation between ac conductivity and defect structures. Solid State Ionics, 2002, 146, 367-376.	2.7	8
367	Simple model for ac ionic conduction in solids. Journal of Chemical Physics, 2005, 122, 151101.	3.0	8
368	Charge injection in organic light emitting diodes governed by interfacial states. , 2006, , .		8
369	Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells. APL Materials, 2022, 10, .	5.1	8
370	Higher-order polarization on the Poincare group and the position operator. Journal of Physics A, 1993, 26, 5375-5390.	1.6	7
371	Structural and electrical conductivity studies on rutile solid solutions [FexTi1-2xMxO2 (M=Nb, Ta)]. Journal of Materials Science, 1998, 33, 4235-4238.	3.7	7
372	Nano-Enabled Photovoltaics. Progress in Materials and Methodologies. Journal of Physical Chemistry Letters, 2013, 4, 1051-1052.	4.6	7
373	EFFECT OF THE CHROMOPHORES STRUCTURES ON THE PERFORMANCE OF SOLID-STATE DYE SENSITIZED SOLAR CELLS. Nano, 2014, 09, 1440005.	1.0	7
374	Crystalline-Size Dependence of Dual Emission Peak on Hybrid Organic Lead-Iodide Perovskite Films at Low Temperatures. Journal of Physical Chemistry C, 2018, 122, 22717-22727.	3.1	7
375	Recycled Photons Traveling Several Millimeters in Waveguides Based on CsPbBr ₃ Perovskite Nanocrystals. Advanced Optical Materials, 2021, 9, 2100807.	7.3	7
376	Digital implementation of filters for nuclear applications using the discrete wavelet transform. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 380, 376-380.	1.6	6
377	Comparative analysis of photovoltaic principles governing dye-sensitized solar cells and p-n junctions. , 2004, 5215, 49.		6
378	Impedance model of two-carrier space-charge limited current in organic light-emitting diodes. , 2004, , .		6

#	Article	IF	Citations
379	Dielectric losses measured in a sodium aluminosilicate glass by using electrical insulating barriers and non-isothermal experimental conditions. Journal of Non-Crystalline Solids, 2008, 354, 3443-3450.	3.1	6
380	Materials for Production and Storage of Renewable Energy. Journal of Physical Chemistry Letters, 2011, 2, 270-271.	4.6	6
381	Effects of Morphology on the Functionality of Organic Electronic Devices. Journal of Physical Chemistry Letters, 2012, 3, 1515-1516.	4.6	6
382	Consistent formulation of the crossover from density to velocity dependent recombination in organic solar cells. Applied Physics Letters, 2015, 107, 073301.	3. 3	6
383	Analysis by thermally stimulated currents of the frequency power-law domains of the dielectric loss. Journal Physics D: Applied Physics, 2001, 34, 968-975.	2.8	5
384	A star-shaped sensitizer based on thienylenevinylene for dye-sensitized solar cells. Tetrahedron Letters, 2013, 54, 431-435.	1.4	5
385	Consolidation and Expansion of Perovskite Solar Cell Research. Journal of Physical Chemistry Letters, 2016, 7, 775-775.	4.6	5
386	Nanostructured Energy Devices., 0, , .		5
387	Improved solar water splitting performance of BiVO4 photoanode by the synergistic effect of Zr-Mo co-doping and FeOOH Co-catalyst layer. Materials Letters, 2022, 325, 132799.	2.6	5
388	Effect of reduced selectivity of contacts on the current-potential characteristics and conversion performance of solar cells. Solar Energy Materials and Solar Cells, 2004, 85, 51-51.	6.2	4
389	Transition from ideal statistics to interactions by host distortion in the intercalation thermodynamics of Li into amorphous WO films of varying thickness. Solid State Ionics, 2005, 176, 1701-1704.	2.7	4
390	Jump diffusion coefficient of different cations intercalated into amorphous WO3. Solid State Ionics, 2006, 177, 1635-1637.	2.7	4
391	Platinum-coated nanostructured oxides for active catalytic electrodes. Catalysis Communications, 2011, 14, 58-61.	3.3	4
392	Room temperature stable ClPrNTf2 ionic liquid utilizing for chemical sensor development. Journal of Organometallic Chemistry, 2016, 811, 74-80.	1.8	4
393	Impedance Spectroscopy in Molecular Devices. Green Chemistry and Sustainable Technology, 2018, , 353-384.	0.7	4
394	Semiconductor αâ€Fe ₂ O ₃ Hematite Fabricated Electrode for Sensitive Detection of Phenolic Pollutants. ChemistrySelect, 2018, 3, 12169-12174.	1.5	4
395	Editorial: Hybrid Organic-Inorganic Photovoltaics. ChemPhysChem, 2014, 15, 987-989.	2.1	3
396	Theory of Light-Modulated Emission Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 3673-3677.	4.6	3

#	Article	IF	CITATIONS
397	Thermal behavior of the KSbMoO6 ionic conductive ceramic. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 63, 234-237.	3.5	2
398	Excitons diffusion and singlet–triplet occupation at high Bose–Einstein chemical potential. Chemical Physics Letters, 2008, 462, 229-233.	2.6	2
399	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	2.5	2
400	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	4.6	2
401	Observation of ionic thermocurrents in zirconia-based solid electrolytes. Ionics, 1995, 1, 377-383.	2.4	1
402	Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. ChemInform, 2004, 35, no.	0.0	1
403	An explanation of the peculiar behavior of TSDC peaks at Tg: a simple model of entropy relaxation. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13, 1042-1048.	2.9	1
404	An explanation of the peculiar behavior of TSDC peaks at Tg: a simple model of entropy relaxation. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13, 1042-1048.	2.9	1
405	Influence of Electron Solvation at the Surface of Nanostructured Semiconductors on the Electronic Density of States. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1581-1586.	2.9	1
406	Analysis of AC permittivity response measured in an ionic glass: a comparison between iso and non-iso thermal conditions. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17, 1164-1171.	2.9	1
407	Trends of Scientific Publication. Journal of Physical Chemistry Letters, 2016, 7, 1703-1703.	4.6	1
408	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	2.6	1
409	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	3.1	1
410	Hybrid Assemblies for Lightâ€Energy Conversion. ChemPhysChem, 2019, 20, 2579-2579.	2.1	1
411	Highly porous Ti–Ni anodes for electrochemical oxidations. Sustainable Energy and Fuels, 2020, 4, 4003-4007.	4.9	1
412	The impedance of spiking neurons coupled by timeâ€delayed interaction. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	1
413	Frequency analysis of diffusion in 1D systems with energy and spatial disorder. Macromolecular Symposia, 2004, 212, 571-574.	0.7	0
414	Extensions of the Stochastic Model of the Overdamped Oscillator Applied to AC Ionic Conductivity in Solids. AIP Conference Proceedings, 2005, , .	0.4	0

#	ARTICLE	IF	CITATIONS
415	Implications of the detailed fluctuation theorem for the sources of irreversibility in interfacial charge transfer processes. Physical Review E, 2005, 72, 056115.	2.1	0
416	Cathode effect on current-voltage characteristics of blue light-emitting diodes based on a polyspirofluorene. , 2008, , .		0
417	Impedance spectroscopy study of solid-state dye-sensitized solar cells with varying Spiro-OMeTAD concentration. Materials Research Society Symposia Proceedings, 2009, 1211, 1.	0.1	O
418	Influence of alumina coating on transport and recombination in DSSCs with 1-methylbenzidazole as electrolyte additives. Proceedings of SPIE, 2009, , .	0.8	0
419	Science in the Age of Digital Networking. Journal of Physical Chemistry Letters, 2015, 6, 2900-2901.	4.6	0
420	Outstanding Reviewers for Energy & Environmental Science in 2016. Energy and Environmental Science, 2017, 10, 845-845.	30.8	0
421	The JPCL New Year's Editorial. Journal of Physical Chemistry Letters, 2017, 8, 41-41.	4.6	0
422	Perspective Collections in the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 5239-5239.	4.6	0
423	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3925-3925.	4.6	0
424	In the Limelight. Journal of Physical Chemistry Letters, 2017, 8, 3718-3719.	4.6	0
425	In the Limelight: Perspective Collections on Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 5688-5688.	4.6	O
426	Editorial: 2017 in Perspective. Journal of Physical Chemistry Letters, 2018, 9, 138-140.	4.6	0
427	Top Selected Papers in the Physical Chemistry of Energy Materials 2016–2017. Journal of Physical Chemistry Letters, 2018, 9, 5897-5905.	4.6	0
428	JPCL: A Dynamic Journal with a Global Reach. Journal of Physical Chemistry Letters, 2019, 10, 113-114.	4.6	0
429	Space-Charge-Limited Transport. , 2017, , 117-130.		0
430	Impedance and Capacitance Spectroscopies. , 2017, , 131-158.		0
431	Drift-Diffusion Transport., 2017,, 35-58.		0
432	Carrier Injection and Drift Transport., 2017,, 1-19.		0