Belen Peral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9567456/publications.pdf

Version: 2024-02-01

49 papers

6,835 citations

32 h-index 49 g-index

49 all docs 49 docs citations

49 times ranked 8026 citing authors

#	Article	IF	CITATIONS
1	Improved integrative analysis of the thiol redox proteome using filter-aided sample preparation. Journal of Proteomics, 2020, 214, 103624.	2.4	14
2	Cytoskeletal transgelin 2 contributes to genderâ€dependent adipose tissue expandability and immune function. FASEB Journal, 2019, 33, 9656-9671.	0.5	6
3	Mitoproteomics: Tackling Mitochondrial Dysfunction in Human Disease. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-26.	4.0	19
4	Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biology, 2017, 11, 415-428.	9.0	40
5	N-acetylcysteine inhibits kinase phosphorylation during 3T3-L1 adipocyte differentiation. Redox Report, 2017, 22, 265-271.	4.5	5
6	Proteome-wide alterations on adipose tissue from obese patients as age-, diabetes- and gender-specific hallmarks. Scientific Reports, 2016, 6, 25756.	3.3	61
7	Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E756-E769.	3. 5	143
8	Parathyroid Hormone-Related Protein, Human Adipose-Derived Stem Cells Adipogenic Capacity and Healthy Obesity. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E826-E835.	3.6	11
9	Transducin-like enhancer of split 3 (TLE3) in adipose tissue is increased in situations characterized by decreased PPARÎ ³ gene expression. Journal of Molecular Medicine, 2015, 93, 83-92.	3.9	5
10	ITCH Deficiency Protects From Diet-Induced Obesity. Diabetes, 2014, 63, 550-561.	0.6	24
11	<i>N</i> -Acetylcysteine affects obesity-related protein expression in 3T3-L1 adipocytes. Redox Report, 2013, 18, 210-218.	4.5	23
12	The MRC1/CD68 Ratio Is Positively Associated with Adipose Tissue Lipogenesis and with Muscle Mitochondrial Gene Expression in Humans. PLoS ONE, 2013, 8, e70810.	2.5	17
13	Attenuated metabolism is a hallmark of obesity as revealed by comparative proteomic analysis of human omental adipose tissue. Journal of Proteomics, 2012, 75, 783-795.	2.4	39
14	Uncovering Suitable Reference Proteins for Expression Studies in Human Adipose Tissue with Relevance to Obesity. PLoS ONE, 2012, 7, e30326.	2.5	25
15	FABP4 Dynamics in Obesity: Discrepancies in Adipose Tissue and Liver Expression Regarding Circulating Plasma Levels. PLoS ONE, 2012, 7, e48605.	2.5	67
16	Breast Cancer 1 (BrCa1) May Be behind Decreased Lipogenesis in Adipose Tissue from Obese Subjects. PLoS ONE, 2012, 7, e33233.	2.5	18
17	Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nature Genetics, 2011, 43, 753-760.	21.4	289
18	Study of the Potential Association of Adipose Tissue GLP-1 Receptor with Obesity and Insulin Resistance. Endocrinology, 2011, 152, 4072-4079.	2.8	121

#	Article	IF	CITATIONS
19	Decreased <i>STAMP2 </i> Expression in Association with Visceral Adipose Tissue Dysfunction. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1816-E1825.	3.6	34
20	The Gene Expression of the Main Lipogenic Enzymes is Downregulated in Visceral Adipose Tissue of Obese Subjects. Obesity, 2010, 18, 13-20.	3.0	99
21	MiRNA Expression Profile of Human Subcutaneous Adipose and during Adipocyte Differentiation. PLoS ONE, 2010, 5, e9022.	2.5	316
22	Study of the proinflammatory role of human differentiated omental adipocytes. Journal of Cellular Biochemistry, 2009, 107, 1107-1117.	2.6	64
23	Subcutaneous Fat Shows Higher Thyroid Hormone Receptorâ€Î±1 Gene Expression Than Omental Fat. Obesity, 2009, 17, 2134-2141.	3.0	39
24	Tackling the human adipose tissue proteome to gain insight into obesity and related pathologies. Expert Review of Proteomics, 2009, 6, 353-361.	3.0	24
25	Differential Proteomics of Omental and Subcutaneous Adipose Tissue Reflects Their Unalike Biochemical and Metabolic Properties. Journal of Proteome Research, 2009, 8, 1682-1693.	3.7	94
26	Proteomics and genomics: A hypothesisâ€free approach to the study of the role of visceral adiposity in the pathogenesis of the polycystic ovary syndrome. Proteomics - Clinical Applications, 2008, 2, 444-455.	1.6	12
27	Proteomic analysis of human omental adipose tissue in the polycystic ovary syndrome using two-dimensional difference gel electrophoresis and mass spectrometry. Human Reproduction, 2008, 23, 651-661.	0.9	108
28	Differential Gene Expression Profile in Omental Adipose Tissue in Women with Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 328-337.	3.6	155
29	Improved resolution of the human adipose tissue proteome at alkaline and wide range pH by the addition of hydroxyethyl disulfide. Proteomics, 2004, 4, 438-441.	2.2	55
30	Association of the Polycystic Ovary Syndrome with Genomic Variants Related to Insulin Resistance, Type 2 Diabetes Mellitus, and Obesity. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2640-2646.	3.6	146
31	Characterization of a 6p21 translocation breakpoint in a family with idiopathic generalized epilepsy. Epilepsy Research, 2003, 56, 155-163.	1.6	8
32	The Methionine 196 Arginine Polymorphism in Exon 6 of the TNF Receptor 2 Gene (TNFRSF1B) Is Associated with the Polycystic Ovary Syndrome and Hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3977-3983.	3.6	92
33	Common single nucleotide polymorphisms in intron 3 of the calpain-10 gene influence hirsutism. Fertility and Sterility, 2002, 77, 581-587.	1.0	33
34	The Methionine 196 Arginine Polymorphism in Exon 6 of the TNF Receptor 2 Gene (TNFRSF1B) Is Associated with the Polycystic Ovary Syndrome and Hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3977-3983.	3.6	31
35	Mutation Analysis of the Entire PKD1 Gene: Genetic and Diagnostic Implications. American Journal of Human Genetics, 2001, 68, 46-63.	6.2	196
36	A Polymorphic Genomic Duplication on Human Chromosome 15 Is a Susceptibility Factor for Panic and Phobic Disorders. Cell, 2001, 106, 367-379.	28.9	219

#	Article	IF	CITATIONS
37	Additional Complexity on Human Chromosome 15q: Identification of a Set of Newly Recognized Duplicons (LCR15) on 15q11–q13, 15q24, and 15q26. Genome Research, 2001, 11, 98-111.	5.5	60
38	HMG20A and HMG20B map to human chromosomes 15q24 and 19p13.3 and constitute a distinct class of HMG-box genes with ubiquitous expression. Cytogenetic and Genome Research, 2000, 88, 62-67.	1.1	36
39	Recurrence of the PKD1 nonsense mutation Q4041X in Spanish, Italian, and British families. Human Mutation, 1998, 11, S117-S120.	2.5	16
40	Identification of Mutations in the Duplicated Region of the Polycystic Kidney Disease 1 Gene (PKD1) by a Novel Approach. American Journal of Human Genetics, 1997, 60, 1399-1410.	6.2	100
41	A stable, nonsense mutation associated with a case of infantile onset polycystic kidney disease 1 (PKD1). Human Molecular Genetics, 1996, 5, 539-542.	2.9	94
42	The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nature Genetics, 1995, 10, 151-160.	21.4	846
43	Splicing mutations of the polycystic kidney disease 1 ($<$ i>PKD1 $<$ /i>) gene induced by intronic deletion. Human Molecular Genetics, 1995, 4, 569-574.	2.9	90
44	Autosomal dominant polycystic kidney disease: molecular analysis. Human Molecular Genetics, 1995, 4, 1745-1749.	2.9	44
45	Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease — a contiguous gene syndrome. Nature Genetics, 1994, 8, 328-332.	21.4	466
46	The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell, 1994, 77, 881-894.	28.9	784
47	Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell, 1993, 75, 1305-1315.	28.9	1,604
48	Estimating locus heterogeneity in autosomal dominant polycystic kidney disease (ADPKD) in the Spanish population Journal of Medical Genetics, 1993, 30, 910-913.	3.2	6
49	Fine genetic localization of the gene for autosomal dominant polycystic kidney disease (PKD1) with respect to physically mapped markers. Genomics, 1992, 13, 152-158.	2.9	37