Michael Dustin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9567070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Goldilocks and the three TILs. Journal of Experimental Medicine, 2022, 219, .	8.5	1
2	The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Communications Biology, 2022, 5, 40.	4.4	39
3	Coordination of two kinesin superfamily motor proteins, KIF3A and KIF13A, is essential for pericellular matrix degradation by membrane-type 1 matrix metalloproteinase (MT1-MMP) in cancer cells. Matrix Biology, 2022, 107, 1-23.	3.6	7
4	Identification of distinct cytotoxic granules as the origin of supramolecular attack particles in T lymphocytes. Nature Communications, 2022, 13, 1029.	12.8	24
5	Dephosphorylation accelerates the dissociation of ZAP70 from the T cell receptor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
6	Basic science under threat: Lessons from the Skirball Institute. Cell, 2022, 185, 755-758.	28.9	0
7	Preparation of Bead-supported Lipid Bilayers to Study the Particulate Output of T Cell Immune Synapses. Journal of Visualized Experiments, 2022, , .	0.3	0
8	Magnesium for T cells: strong to the finish!. Trends in Immunology, 2022, 43, 277-279.	6.8	4
9	Neuroinflammation associated with ultrasound-mediated permeabilization of the blood–brain barrier. Trends in Neurosciences, 2022, 45, 459-470.	8.6	19
10	Germinal center expansion but not plasmablast differentiation is proportional to peptide-MHCII density via CD40-CD40L signaling strength. Cell Reports, 2022, 39, 110763.	6.4	9
11	The CD58–CD2 axis in cancer immune evasion. Nature Reviews Immunology, 2022, 22, 409-409.	22.7	6
12	Artificial Antigen Presenting Cells for Detection and Desensitization of Autoreactive T cells Associated with Type 1 Diabetes. Nano Letters, 2022, 22, 4376-4382.	9.1	3
13	T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles. Nature Communications, 2022, 13, .	12.8	18
14	Model membrane systems to reconstitute immune cell signaling. FEBS Journal, 2021, 288, 1070-1090.	4.7	25
15	The Zinc Finger Protein Zbtb18 Represses Expression of Class I Phosphatidylinositol 3-Kinase Subunits and Inhibits Plasma Cell Differentiation. Journal of Immunology, 2021, 206, 1515-1527.	0.8	3
16	Promises and challenges of adoptive T-cell therapies for solid tumours. British Journal of Cancer, 2021, 124, 1759-1776.	6.4	113
17	Two-dimensional TIRF-SIM–traction force microscopy (2D TIRF-SIM-TFM). Nature Communications, 2021, 12, 2169.	12.8	31
18	Activated Regulatory T-Cells, Dysfunctional and Senescent T-Cells Hinder the Immunity in Pancreatic Cancers, 2021, 13, 1776.	3.7	24

#	Article	IF	CITATIONS
19	The discriminatory power of the T cell receptor. ELife, 2021, 10, .	6.0	52
20	Allosteric activation of TÂcell antigen receptor signaling by quaternary structure relaxation. Cell Reports, 2021, 36, 109375.	6.4	23
21	Increasing LFA-1 Expression Enhances Immune Synapse Architecture and T Cell Receptor Signaling in Jurkat E6.1 Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 673446.	3.7	13
22	The Bardet–Biedl syndrome complex component BBS1 controls T cell polarity during immune synapse assembly. Journal of Cell Science, 2021, 134, .	2.0	17
23	Tireless surveillance by exhausted T cells. Journal of Clinical Investigation, 2021, 131, .	8.2	2
24	Characterization of mechanisms positioning costimulatory complexes in immune synapses. IScience, 2021, 24, 103100.	4.1	2
25	Decreased blood vessel density and endothelial cell subset dynamics during ageing of the endocrine system. EMBO Journal, 2021, 40, e105242.	7.8	36
26	The staying power of hematopoietic stem cells. Journal of Cell Biology, 2021, 220, .	5.2	0
27	Three-Dimensional Single Molecule Localization Microscopy Reveals the Topography of the Immunological Synapse at Isotropic Precision below 15 nm. Nano Letters, 2021, 21, 9247-9255.	9.1	13
28	Locked and loaded: strong TCR signaling primes anti-PD-1 therapy. Trends in Immunology, 2021, 42, 1066-1068.	6.8	3
29	Cytoskeletal tension actively sustains the migratory Tâ€cell synaptic contact. EMBO Journal, 2020, 39, e102783.	7.8	53
30	Cell–cell interfaces as specialized compartments directing cell function. Nature Reviews Molecular Cell Biology, 2020, 21, 750-764.	37.0	60
31	Structural basis for RIFIN-mediated activation of LILRB1 in malaria. Nature, 2020, 587, 309-312.	27.8	30
32	Exosomes derived from HEK293T cells interact in an efficient and noninvasive manner with mammalian sperm <i>in vitro</i> . Nanomedicine, 2020, 15, 1965-1980.	3.3	23
33	Coreceptors and TCR Signaling – the Strong and the Weak of It. Frontiers in Cell and Developmental Biology, 2020, 8, 597627.	3.7	31
34	A dynamic CD2-rich compartment at the outer edge of the immunological synapse boosts and integrates signals. Nature Immunology, 2020, 21, 1232-1243.	14.5	72
35	Maturation of Monocyte-Derived DCs Leads to Increased Cellular Stiffness, Higher Membrane Fluidity, and Changed Lipid Composition. Frontiers in Immunology, 2020, 11, 590121.	4.8	24
36	Supramolecular attack particles are autonomous killing entities released from cytotoxic T cells. Science, 2020, 368, 897-901.	12.6	98

#	Article	IF	CITATIONS
37	Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. PLoS Pathogens, 2020, 16, e1008359.	4.7	28
38	Single-Molecule, Super-Resolution, and Functional Analysis of G Protein-Coupled Receptor Behavior Within the T Cell Immunological Synapse. Frontiers in Cell and Developmental Biology, 2020, 8, 608484.	3.7	6
39	A checkpoint cliffhanger at the dawn of placental mammals. Journal of Biological Chemistry, 2020, 295, 4381-4382.	3.4	1
40	Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. , 2020, 16, e1008359.		0
41	Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. , 2020, 16, e1008359.		0
42	Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. , 2020, 16, e1008359.		0
43	Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. , 2020, 16, e1008359.		0
44	Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. , 2020, 16, e1008359.		0
45	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
46	The HVEM-BTLA Axis Restrains T Cell Help to Germinal Center B Cells and Functions as a Cell-Extrinsic Suppressor in Lymphomagenesis. Immunity, 2019, 51, 310-323.e7.	14.3	74
47	Cutting Edge: Synapse Propensity of Human Memory CD8 T Cells Confers Competitive Advantage over Naive Counterparts. Journal of Immunology, 2019, 203, 601-606.	0.8	12
48	An X-ray Vision for Phosphoantigen Recognition. Immunity, 2019, 50, 1026-1028.	14.3	7
49	Integrins and Their Role in Immune Cell Adhesion. Cell, 2019, 177, 499-501.	28.9	40
50	Immunophenotypes of pancreatic ductal adenocarcinoma: Metaâ€analysis of transcriptional subtypes. International Journal of Cancer, 2019, 145, 1125-1137.	5.1	30
51	Steering CAR T Cells into Solid Tumors. New England Journal of Medicine, 2019, 380, 289-291.	27.0	11
52	Composition and structure of synaptic ectosomes exporting antigen receptor linked to functional CD40 ligand from helper T cells. ELife, 2019, 8, .	6.0	57
53	A tissue-like platform for studying engineered quiescent human T-cells' interactions with dendritic cells. ELife, 2019, 8, .	6.0	14
54	Capturing resting T cells: the perils of PLL. Nature Immunology, 2018, 19, 203-205.	14.5	62

#	Article	IF	CITATIONS
55	Durable Interactions of T Cells with T Cell Receptor Stimuli in the Absence of a Stable Immunological Synapse. Cell Reports, 2018, 22, 340-349.	6.4	36
56	Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering. Nature Nanotechnology, 2018, 13, 610-617.	31.5	122
57	CD8 helps TCR catch slippery self pMHC. Nature Immunology, 2018, 19, 1280-1281.	14.5	2
58	CD45 exclusion– and cross-linking–based receptor signaling together broaden FcεRI reactivity. Science Signaling, 2018, 11, .	3.6	31
59	Tumor Necrosis Factor Receptor Superfamily in T Cell Priming and Effector Function. Advances in Immunology, 2018, 140, 21-57.	2.2	17
60	Reconstitution of immune cell interactions in free-standing membranes. Journal of Cell Science, 2018, 132, .	2.0	25
61	The Study of Platelet Receptors Using Artificial Lipid Bilayers. Methods in Molecular Biology, 2018, 1812, 127-137.	0.9	Ο
62	Organization of Immunological Synapses and Kinapses. , 2018, , 1-37.		1
63	F-Actin-Driven CD28-CD80 Localization in the Immune Synapse. Cell Reports, 2018, 24, 1151-1162.	6.4	29
64	Protein tyrosine phosphatase PTPN22 regulates LFA-1 dependent Th1 responses. Journal of Autoimmunity, 2018, 94, 45-55.	6.5	19
65	A Stretch of Negatively Charged Amino Acids of Linker for Activation of T-Cell Adaptor Has a Dual Role in T-Cell Antigen Receptor Intracellular Signaling. Frontiers in Immunology, 2018, 9, 115.	4.8	12
66	Natural killers shed attachments to kill again. Journal of Cell Biology, 2018, 217, 2983-2985.	5.2	3
67	The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease. Journal of Clinical Investigation, 2018, 128, 4604-4621.	8.2	32
68	Distinct behavior of myelomonocytic cells and CD8 T cells underlies the hepatic response to Listeria monocytogenes. Wellcome Open Research, 2018, 3, 48.	1.8	3
69	Dendritic cell-expressed common gamma-chain recruits IL-15 for trans-presentation at the murine immunological synapse. Wellcome Open Research, 2018, 3, 84.	1.8	7
70	Dendritic cell-expressed common gamma-chain recruits IL-15 for trans-presentation at the murine immunological synapse. Wellcome Open Research, 2018, 3, 84.	1.8	4
71	Dynamin-2 Stabilizes the HIV-1 Fusion Pore with a Low Oligomeric State. Cell Reports, 2017, 18, 443-453.	6.4	27
72	Comprehensive Analysis of Immunological Synapse Phenotypes Using Supported Lipid Bilayers. Methods in Molecular Biology, 2017, 1584, 423-441.	0.9	16

#	Article	IF	CITATIONS
73	Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature, 2017, 546, 158-161.	27.8	153
74	Membrane nanoclusters of Fcl ³ RI segregate from inhibitory SIRPl± upon activation of human macrophages. Journal of Cell Biology, 2017, 216, 1123-1141.	5.2	52
75	Help to go: T cells transfer CD40L to antigenâ€presenting B cells. European Journal of Immunology, 2017, 47, 31-34.	2.9	11
76	Foxo4―and Stat3â€dependent ILâ€10 production by progranulin in regulatory T cells restrains inflammatory arthritis. FASEB Journal, 2017, 31, 1354-1367.	0.5	35
77	The tyrosine phosphatase SHP-1 promotes T cell adhesion by activating the adaptor protein CrkII in the immunological synapse. Science Signaling, 2017, 10, .	3.6	27
78	Crosstalk between Regulatory T Cells and Tumor-Associated Dendritic Cells Negates Anti-tumor Immunity in Pancreatic Cancer. Cell Reports, 2017, 20, 558-571.	6.4	273
79	TFH-derived dopamine accelerates productive synapses in germinal centres. Nature, 2017, 547, 318-323.	27.8	124
80	Human in vitro-induced regulatory T cells display Dlgh1 dependent and PKC-Î, restrained suppressive activity. Scientific Reports, 2017, 7, 4258.	3.3	5
81	Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory TÂcells. Journal of Allergy and Clinical Immunology, 2017, 139, 607-620.e15.	2.9	77
82	Complement Receptors in Myeloid Cell Adhesion and Phagocytosis. , 2017, , 429-445.		1
83	The Immune Synapse: Past, Present, and Future. Methods in Molecular Biology, 2017, 1584, 1-5.	0.9	27
84	Spatial Control of Biological Ligands on Surfaces Applied to T Cell Activation. Methods in Molecular Biology, 2017, 1584, 307-331.	0.9	5
85	Localizing order to boost signaling. ELife, 2017, 6, .	6.0	13
86	Increased generation of Foxp3+ regulatory T cells by manipulating antigen presentation in the thymus. Nature Communications, 2016, 7, 10562.	12.8	49
87	Phagocytes Get Close to Their Enemies. Developmental Cell, 2016, 36, 131-132.	7.0	1
88	Actin Dynamics and HIV-1 Entry. Trends in Molecular Medicine, 2016, 22, 354-356.	6.7	3
89	Liquidity in immune cell signaling. Science, 2016, 352, 516-517.	12.6	12
90	Force Bistability in Adhesion Switch. Biophysical Journal, 2016, 111, 900-901.	0.5	0

#	Article	IF	CITATIONS
91	Mitochondrial fusion fuels T cell memory. Cell Research, 2016, 26, 969-970.	12.0	7
92	Signaling and Polarized Communication Across the T Cell Immunological Synapse. Annual Review of Cell and Developmental Biology, 2016, 32, 303-325.	9.4	117
93	Complement Receptors in Myeloid Cell Adhesion and Phagocytosis. Microbiology Spectrum, 2016, 4, .	3.0	35
94	HIV Envelope gp120 Alters T Cell Receptor Mobilization in the Immunological Synapse of Uninfected CD4 T Cells and Augments T Cell Activation. Journal of Virology, 2016, 90, 10513-10526.	3.4	10
95	Immunological Synapses. , 2016, , 16-24.		1
96	Actin polymerizationâ€dependent activation of Cas‣ promotes immunological synapse stability. Immunology and Cell Biology, 2016, 94, 981-993.	2.3	20
97	Agile CD 22 nanoclusters run rings around fenced BCR. EMBO Journal, 2016, 35, 237-238.	7.8	2
98	Tapping out a mechanical code for T cell triggering. Journal of Cell Biology, 2016, 213, 501-503.	5.2	4
99	What Scales the T Cell Response?. Trends in Immunology, 2016, 37, 513-522.	6.8	34
100	Molecular Occupancy of Nanodot Arrays. ACS Nano, 2016, 10, 4173-4183.	14.6	26
101	Killers on sterols. Nature, 2016, 531, 583-584.	27.8	15
102	High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography. Nano Letters, 2016, 16, 2198-2204.	9.1	42
103	Size-dependent protein segregation at membraneÂinterfaces. Nature Physics, 2016, 12, 704-711.	16.7	126
104	Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria. PLoS Pathogens, 2015, 11, e1005210.	4.7	78
105	Immunology: Dendritic Cells Pull the T Cell's Strings. Current Biology, 2015, 25, R413-R415.	3.9	3
106	E-cadherin junction formation involves an active kinetic nucleation process. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10932-10937.	7.1	84
107	A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays. Integrative Biology (United Kingdom), 2015, 7, 1442-1453.	1.3	5
108	Micropatterning of TCR and LFA-1 ligands reveals complementary effects on cytoskeleton mechanics in T cells. Integrative Biology (United Kingdom), 2015, 7, 1272-1284.	1.3	90

#	Article	IF	CITATIONS
109	Integrative analysis of T cell motility from multi-channel microscopy data using TIAM. Journal of Immunological Methods, 2015, 416, 84-93.	1.4	10
110	Pointing B cells in the right direction. Journal of Experimental Medicine, 2015, 212, 3-4.	8.5	0
111	T Cells Have a Light Touch. Biophysical Journal, 2015, 108, 2089-2090.	0.5	0
112	Collecting Lymphatic Vessel Permeability Facilitates Adipose Tissue Inflammation and Distribution of Antigen to Lymph Node–Homing Adipose Tissue Dendritic Cells. Journal of Immunology, 2015, 194, 5200-5210.	0.8	102
113	Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway. ELife, 2015, 4, .	6.0	200
114	CD28–CD80 Interactions Control Regulatory T Cell Motility and Immunological Synapse Formation. Journal of Immunology, 2014, 193, 5894-5903.	0.8	24
115	Surface expression of the hRSV nucleoprotein impairs immunological synapse formation with T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3214-23.	7.1	58
116	Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 35695-35710.	3.4	70
117	Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16814-16819.	7.1	185
118	The Immunological Synapse. Cancer Immunology Research, 2014, 2, 1023-1033.	3.4	330
119	What Counts in the Immunological Synapse?. Molecular Cell, 2014, 54, 255-262.	9.7	52
120	How T Cells Lose Their Touch. Immunity, 2014, 40, 169-171.	14.3	0
121	TCR signaling: the barrier within. Nature Immunology, 2014, 15, 136-137.	14.5	12
122	Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature, 2014, 507, 118-123.	27.8	354
123	Force and affinity in ligand discrimination by the TCR. Trends in Immunology, 2014, 35, 597-603.	6.8	31
124	Cross Talk between CD3 and CD28 Is Spatially Modulated by Protein Lateral Mobility. Molecular and Cellular Biology, 2014, 34, 955-964.	2.3	40
125	T-cells play the classics with a different spin. Molecular Biology of the Cell, 2014, 25, 1699-1703.	2.1	4
126	T cell antigen receptor activation and actin cytoskeleton remodeling. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 546-556.	2.6	133

#	Article	IF	CITATIONS
127	Opening the Frontier of the T Cell Surface: Schlossman and Goldstein. Journal of Immunology, 2013, 190, 5343-5345.	0.8	0
128	Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation. Nature Immunology, 2013, 14, 404-412.	14.5	303
129	"Cell Biology Meets Physiology. Current Topics in Membranes, 2013, 72, 313-346.	0.9	3
130	Nanoscale Ligand Spacing Influences Receptor Triggering in T Cells and NK Cells. Nano Letters, 2013, 13, 5608-5614.	9.1	110
131	T Cell Activation is Determined by the Number of Presented Antigens. Nano Letters, 2013, 13, 5619-5626.	9.1	112
132	Bifunctional nanoarrays for probing the immune response at the single-molecule level. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 06F902.	1.2	10
133	Differential splicing across immune system lineages. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14324-14329.	7.1	64
134	PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. Journal of Experimental Medicine, 2013, 210, 757-774.	8.5	211
135	The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood, 2013, 121, 4295-4302.	1.4	93
136	Antigen Feast or Famine. Science, 2012, 335, 408-409.	12.6	16
137	Self-reactive human CD4 T cell clones form unusual immunological synapses. Journal of Experimental Medicine, 2012, 209, 335-352.	8.5	77
138	T Lymphocyte Myosin IIA is Required for Maturation of the Immunological Synapse. Frontiers in Immunology, 2012, 3, 230.	4.8	67
139	Mechanosensing in T Lymphocyte Activation. Biophysical Journal, 2012, 102, L5-L7.	0.5	227
140	T Cell Receptors Adapt by Spacing Out. Biophysical Journal, 2012, 103, 1813.	0.5	0
141	Distinct influences of peptide-MHC quality and quantity on in vivo T-cell responses. Proceedings of the United States of America, 2012, 109, 881-886.	7.1	84
142	Receptor Signaling Clusters in the Immune Synapse. Annual Review of Biophysics, 2012, 41, 543-556.	10.0	215
143	Signaling at neuro/immune synapses. Journal of Clinical Investigation, 2012, 122, 1149-1155.	8.2	74
144	Suppressing T cell motility induced by anti–CTLA-4 monotherapy improves antitumor effects. Journal of Clinical Investigation, 2012, 122, 3718-3730.	8.2	167

#	Article	IF	CITATIONS
145	New insights into the T cell synapse from single molecule techniques. Nature Reviews Immunology, 2011, 11, 672-684.	22.7	177
146	Visualization of cellâ€cell interaction contacts: Synapses and kinapses. Self/nonself, 2011, 2, 85-97.	2.0	14
147	T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9089-9094.	7.1	164
148	Boltzmann Energy-based Image Analysis Demonstrates that Extracellular Domain Size Differences Explain Protein Segregation at Immune Synapses. PLoS Computational Biology, 2011, 7, e1002076.	3.2	24
149	Essential Role of Ubiquitin and TSG101 Protein in Formation and Function of the Central Supramolecular Activation Cluster. Immunity, 2010, 32, 531-540.	14.3	140
150	Cytotoxic immunological synapses. Immunological Reviews, 2010, 235, 24-34.	6.0	188
151	Protein Kinase C-Î, Mediates Negative Feedback on Regulatory T Cell Function. Science, 2010, 328, 372-376.	12.6	261
152	Insights into Function of the Immunological Synapse from Studies with Supported Planar Bilayers. Current Topics in Microbiology and Immunology, 2010, 340, 1-24.	1.1	22
153	Germinal Center Dynamics Revealed by Multiphoton Microscopy withÂa Photoactivatable Fluorescent Reporter. Cell, 2010, 143, 592-605.	28.9	1,026
154	Functional Anatomy of T Cell Activation and Synapse Formation. Annual Review of Immunology, 2010, 28, 79-105.	21.8	440
155	Understanding the Structure and Function of the Immunological Synapse. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002311-a002311.	5.5	217
156	The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. Journal of Cell Biology, 2009, 185, 521-534.	5.2	102
157	Modular Design of Immunological Synapses and Kinapses. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002873-a002873.	5.5	43
158	Human Immunodeficiency Virus Type 1 Envelope gp120-Induced Partial T-Cell Receptor Signaling Creates an F-Actin-Depleted Zone in the Virological Synapse. Journal of Virology, 2009, 83, 11341-11355.	3.4	68
159	T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nature Immunology, 2009, 10, 531-539.	14.5	191
160	The Cellular Context of T Cell Signaling. Immunity, 2009, 30, 482-492.	14.3	150
161	Supported bilayers at the vanguard of immune cell activation studies. Journal of Structural Biology, 2009, 168, 152-160.	2.8	64
162	Multiscale analysis of T cell activation: correlating in vitro and in vivo analysis of the immunological synapse. Current Topics in Microbiology and Immunology, 2009, 334, 47-70.	1.1	7

#	Article	IF	CITATIONS
163	Tâ€eell activation through immunological synapses and kinapses. Immunological Reviews, 2008, 221, 77-89.	6.0	277
164	T Cell Receptor Microcluster Transport through Molecular Mazes Reveals Mechanism of Translocation. Biophysical Journal, 2008, 94, 3286-3292.	0.5	158
165	Hunter to Gatherer and Back: Immunological Synapses and Kinapses as Variations on the Theme of Amoeboid Locomotion. Annual Review of Cell and Developmental Biology, 2008, 24, 577-596.	9.4	87
166	Tug of War at the Exit Door. Immunity, 2008, 28, 15-17.	14.3	6
167	Spatiotemporal Regulation of T Cell Costimulation by TCR-CD28 Microclusters and Protein Kinase C Î, Translocation. Immunity, 2008, 29, 589-601.	14.3	261
168	Synaptic Asymmetry to Go. Cell, 2008, 132, 733-734.	28.9	6
169	Th1 and Th2 Cells Form Morphologically Distinct Immunological Synapses. Journal of Immunology, 2008, 181, 393-399.	0.8	49
170	Micropatterning of costimulatory ligands enhances CD4 ⁺ T cell function. Proceedings of the United States of America, 2008, 105, 7791-7796.	7.1	103
171	Nanoscale Increases in CD2-CD48-mediated Intermembrane Spacing Decrease Adhesion and Reorganize the Immunological Synapse. Journal of Biological Chemistry, 2008, 283, 34414-34422.	3.4	66
172	T Cell-Dendritic Cell Immunological Synapses Contain TCR-dependent CD28-CD80 Clusters That Recruit Protein Kinase Cl̂,. Journal of Immunology, 2008, 181, 4852-4863.	0.8	97
173	A Molecular Dissection of Lymphocyte Unresponsiveness Induced by Sustained Calcium Signalling. Novartis Foundation Symposium, 2008, , 165-179.	1.1	19
174	Visualization of Cell-Cell Interaction Contacts-Synapses and Kinapses. Advances in Experimental Medicine and Biology, 2008, 640, 164-182.	1.6	17
175	Viral meningitis in real time. FASEB Journal, 2008, 22, 856.11.	0.5	0
176	Quantification and Modeling of Tripartite CD2-, CD58FC Chimera (Alefacept)-, and CD16-mediated Cell Adhesion. Journal of Biological Chemistry, 2007, 282, 34748-34757.	3.4	23
177	Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20296-20301.	7.1	348
178	Supported Planar Bilayers for Study of the Immunological Synapse. Current Protocols in Immunology, 2007, 76, Unit 18.13.	3.6	75
179	Opposing Effects of PKCÎ, and WASp on Symmetry Breaking and Relocation of the Immunological Synapse. Cell, 2007, 129, 773-785.	28.9	316
180	Peptide-MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes. Nature Immunology, 2007, 8, 835-844.	14.5	197

#	Article	IF	CITATIONS
181	Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses. Current Opinion in Cell Biology, 2007, 19, 529-533.	5.4	143
182	Mechanisms of Cellular Avidity Regulation in CD2–CD58-Mediated T Cell Adhesion. ACS Chemical Biology, 2006, 1, 649-658.	3.4	42
183	T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster. Immunity, 2006, 25, 117-127.	14.3	777
184	Target Cell Contributions to Cytotoxic T Cell Sensitivity. , 2006, , 199-220.		0
185	T cell–dendritic cell immunological synapses. Current Opinion in Immunology, 2006, 18, 512-516.	5.5	100
186	Impact of the Immunological Synapse on T Cell Signaling. , 2006, 43, 175-198.		13
187	IMMUNOLOGY: When F-actin Becomes Too Much of a Good Thing. Science, 2006, 313, 767-768.	12.6	9
188	Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. Journal of Experimental Medicine, 2006, 203, 505-511.	8.5	471
189	T cells like a firm molecular handshake. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4335-4336.	7.1	15
190	Antibody catches T-cell receptor in the act. Blood, 2005, 106, 396-396.	1.4	1
191	Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nature Immunology, 2005, 6, 1253-1262.	14.5	648
192	Actin and agonist MHC–peptide complex–dependent T cell receptor microclusters as scaffolds for signaling. Journal of Experimental Medicine, 2005, 202, 1031-1036.	8.5	571
193	Altered TCR Signaling from Geometrically Repatterned Immunological Synapses. Science, 2005, 310, 1191-1193.	12.6	491
194	A dynamic view of the immunological synapse. Seminars in Immunology, 2005, 17, 400-410.	5.6	105
195	Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunology, 2004, 5, 255-265.	14.5	489
196	Membranes as messengers in T cell adhesion signaling. Nature Immunology, 2004, 5, 363-372.	14.5	207
197	Visualizing dendritic cell networks in vivo. Nature Immunology, 2004, 5, 1243-1250.	14.5	823
198	Stop and Go Traffic to Tune T Cell Responses. Immunity, 2004, 21, 305-314.	14.3	144

#	Article	IF	CITATIONS
199	What is the importance of the immunological synapse?. Trends in Immunology, 2004, 25, 323-327.	6.8	256
200	A Supercode for Inflammation. Immunity, 2004, 20, 361-362.	14.3	3
201	New ways for lymphocytes to meet. Blood, 2004, 104, 2618-2619.	1.4	1
202	Cytotoxic T lymphocytes form an antigen-independent ring junction. Journal of Clinical Investigation, 2004, 113, 49-57.	8.2	113
203	Supported planar bilayers in studies on immune cell adhesion and communication. Journal of Immunological Methods, 2003, 278, 19-32.	1.4	228
204	Coordination of T Cell Activation and Migration through Formation of the Immunological Synapse. Annals of the New York Academy of Sciences, 2003, 987, 51-59.	3.8	46
205	In vivo imaging approaches in animal models of rheumatoid arthritis. Arthritis Research, 2003, 5, 165.	2.0	11
206	Neural and Immunological Synaptic Relations. Science, 2002, 298, 785-789.	12.6	243
207	The immunological synapse. Arthritis Research, 2002, 4, S119.	2.0	58
208	Regulation of T Cell Migration Through Formation of Immunological Synapses. Advances in Experimental Medicine and Biology, 2002, 512, 191-201.	1.6	9
209	Membrane domains and the immunological synapse: keeping T cells resting and ready. Journal of Clinical Investigation, 2002, 109, 155-160.	8.2	24
210	Identification of Self Through Two-Dimensional Chemistry and Synapses. Annual Review of Cell and Developmental Biology, 2001, 17, 133-157.	9.4	139
211	Role of adhesion molecules in activation signaling in T lymphocytes. , 2001, 21, 258-263.		54
212	The immunological relay race: B cells take antigen by synapse. Nature Immunology, 2001, 2, 480-482.	14.5	27
213	The immunological synapse and CD28-CD80 interactions. Nature Immunology, 2001, 2, 1159-1166.	14.5	276
214	The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunology, 2000, 1, 23-29.	14.5	593
215	A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10138-10143.	7.1	189
216	Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Seminars in Immunology, 2000, 12, 5-21.	5.6	264

#	Article	IF	CITATIONS
217	Costimulation: Building an Immunological Synapse. Science, 1999, 283, 649-650.	12.6	230
218	The Immunological Synapse: A Molecular Machine Controlling T Cell Activation. Science, 1999, 285, 221-227.	12.6	2,861
219	A Novel Adaptor Protein Orchestrates Receptor Patterning and Cytoskeletal Polarity in T-Cell Contacts. Cell, 1998, 94, 667-677.	28.9	642
220	Making a Little Affinity Go a Long Way: A Topological View of LFA-1 Regulation. Cell Adhesion and Communication, 1998, 6, 255-262.	1.7	31
221	The Lymphocyte Function–associated Antigen 1 I Domain Is a Transient Binding Module for Intercellular Adhesion Molecule (ICAM)-1 and ICAM-3 in Hydrodynamic Flow. Journal of Experimental Medicine, 1997, 186, 719-730.	8.5	69
222	Adhesive Bond Dynamics in Contacts between T Lymphocytes and Glass-supported Planar Bilayers Reconstituted with the Immunoglobulin-related Adhesion Molecule CD58. Journal of Biological Chemistry, 1997, 272, 15782-15788.	3.4	65
223	Low Affinity Interaction of Human or Rat T Cell Adhesion Molecule CD2 with Its Ligand Aligns Adhering Membranes to Achieve High Physiological Affinity. Journal of Biological Chemistry, 1997, 272, 30889-30898.	3.4	161
224	Making the T Cell Receptor Go the Distance: A Topological View of T Cell Activation. Immunity, 1997, 6, 361-369.	14.3	381
225	Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3909-3913.	7.1	361
226	Low affinity of cell surface lymphocyte function-associated antigen-1 (LFA-1) generates selectivity for cell-cell interactions. Journal of Immunology, 1997, 159, 2685-92.	0.8	26
227	Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area Journal of Cell Biology, 1996, 132, 465-474.	5.2	227
228	A mannose 6-phosphate-containing N-linked glycopeptide derived from lysosomal acid lipase is bound to MHC class II in B lymphoblastoid cell lines. Journal of Immunology, 1996, 156, 1841-7.	0.8	5
229	TCR-mediated adhesion of T cell hybridomas to planar bilayers containing purified MHC class II/peptide complexes and receptor shedding during detachment. Journal of Immunology, 1996, 157, 2014-21.	0.8	40
230	Regulation of locomotion and cell-cell contact area by the LFA-1 and ICAM-1 adhesion receptors. Journal of Immunology, 1992, 148, 2654-63.	0.8	85
231	Two-way signalling through the Lfa-1 lymphocyte adhesion receptor. BioEssays, 1990, 12, 421-427.	2.5	22
232	RNA-Seq analysis of early transcriptional responses to activation in the leukaemic Jurkat E6.1 T cell line. Wellcome Open Research, 0, 5, 42.	1.8	2
233	RNA-Seq analysis of early transcriptional responses to activation in the leukaemic Jurkat E6.1 T cell line. Wellcome Open Research, 0, 5, 42.	1.8	6