
Stanley J Watson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9565604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Research, 2005, 33, e175-e175.	6.5	1,654
2	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	9.4	1,191
3	Endogenous Opioids: Biology and Function. Annual Review of Neuroscience, 1984, 7, 223-255.	5.0	1,136
4	Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends in Neurosciences, 1995, 18, 22-29.	4.2	1,119
5	Anatomy of CNS opioid receptors. Trends in Neurosciences, 1988, 11, 308-314.	4.2	1,078
6	Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience, 1995, 64, 477-505.	1.1	953
7	Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: An in situ hybridization study. Journal of Comparative Neurology, 1994, 350, 412-438.	0.9	774
8	Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. Journal of Neuroscience, 1987, 7, 2445-64.	1.7	772
9	Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. Journal of Biological Chemistry, 1993, 268, 15174-9.	1.6	631
10	Regulation of Serotonin1A, Glucocorticoid, and Mineralocorticoid Receptor in Rat and Human Hippocampus: Implications for the Neurobiology of Depression. Biological Psychiatry, 1998, 43, 547-573.	0.7	625
11	Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15653-15658.	3.3	577
12	Ventral subicular interaction with the hypothalamic paraventricular nucleus: Evidence for a relay in the bed nucleus of the stria terminalis. Journal of Comparative Neurology, 1993, 332, 1-20.	0.9	540
13	Molecular cloning of a novel melanocortin receptor. Journal of Biological Chemistry, 1993, 268, 8246-50.	1.6	497
14	Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9950-9955.	3.3	477
15	Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2Receptors. Journal of Biological Chemistry, 2002, 277, 18091-18097.	1.6	450
16	Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization- receptor autoradiographic analysis. Journal of Neuroscience, 1990, 10, 2587-2600.	1.7	447
17	Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. Journal of Neuroscience, 1989, 9, 3072-3082.	1.7	440
18	Dynorphin and vasopressin: common localization in magnocellular neurons. Science, 1982, 216, 85-87.	6.0	433

#	Article	IF	CITATIONS
19	Evidence for two separate opiate peptide neuronal systems. Nature, 1978, 275, 226-228.	13.7	424
20	Cloning and pharmacological characterization of a rat \hat{l} ¹ / ₄ opioid receptor. Neuron, 1993, 11, 903-913.	3.8	420
21	Anatomy of the CNS opioid systems. Trends in Neurosciences, 1985, 8, 111-119.	4.2	399
22	Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain — a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Research, 1991, 561, 51-60.	1.1	362
23	Dysregulation of the fibroblast growth factor system in major depression. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15506-15511.	3.3	356
24	Anatomy of an Endogenous Antagonist: Relationship between Agouti-Related Protein and Proopiomelanocortin in Brain. Journal of Neuroscience, 1999, 19, RC26-RC26.	1.7	333
25	Cloning and pharmacological characterization of a rat kappa opioid receptor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9954-9958.	3.3	332
26	Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature, 2022, 604, 509-516.	13.7	326
27	Neural circuits mediating stress. Biological Psychiatry, 1999, 46, 1461-1471.	0.7	324
28	Behavioral neurochemistry: neuroregulators and behavioral states. Science, 1978, 200, 964-973.	6.0	321
29	Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Molecular Psychiatry, 2011, 16, 634-646.	4.1	313
30	Dynorphin immunocytochemistry in the rat central nervous system. Peptides, 1982, 3, 941-954.	1.2	305
31	Localization and Regulation of Glucocorticoid and Mineralocorticoid Receptor Messenger RNAs in the Hippocampal Formation of the Rat. Molecular Endocrinology, 1989, 3, 1886-1894.	3.7	303
32	An Animal Model of Genetic Vulnerability to Behavioral Disinhibition and Responsiveness to Reward-Related Cues: Implications for Addiction. Neuropsychopharmacology, 2010, 35, 388-400.	2.8	303
33	Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus, 2004, 14, 636-648.	0.9	298
34	Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biological Psychiatry, 2004, 55, 346-352.	0.7	294
35	μ-Opioid receptor mRNA expression in the rat CNS: comparison to μ-receptor binding. Brain Research, 1994, 643, 245-265.	1.1	289
36	ldentification of proopiomelanocortin neurones in rat hypothalamus by in situ cDNA-mRNA hybridization. Nature, 1983, 306, 374-376.	13.7	284

#	Article	IF	CITATIONS
37	Enkephalin systems in diencephalon and brainstem of the rat. Journal of Comparative Neurology, 1983, 220, 310-320.	0.9	278
38	Differential Distribution and Regulation of OX1 and OX2 Orexin/Hypocretin Receptor Messenger RNA in the Brain upon Fasting. Hormones and Behavior, 2000, 37, 335-344.	1.0	276
39	Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7501-7506.	3.3	274
40	Cocaine, Ethanol, and Genotype Effects on Human Midbrain Serotonin Transporter Binding Sites and mRNA Levels. American Journal of Psychiatry, 1998, 155, 207-213.	4.0	274
41	Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science, 1982, 218, 1134-1136.	6.0	270
42	Distribution of α1a-, α1b- and α1d-adrenergic receptor mRNA in the rat brain and spinal cord. Journal of Chemical Neuroanatomy, 1997, 13, 115-139.	1.0	269
43	Social Stress in Hamsters: Defeat Activates Specific Neurocircuits within the Brain. Journal of Neuroscience, 1997, 17, 8842-8855.	1.7	267
44	Mitochondrial involvement in psychiatric disorders. Annals of Medicine, 2008, 40, 281-295.	1.5	265
45	Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biological Psychiatry, 2004, 55, 225-233.	0.7	256
46	Elicitation and reduction of fear: behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos. Neuroscience, 1997, 78, 1087-1104.	1.1	252
47	The cloned μ, δ and κ receptors and their endogenous ligands: Evidence for two opioid peptide recognition cores. Brain Research, 1995, 700, 89-98.	1.1	250
48	Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology, 2007, 191, 599-607.	1.5	247
49	Dopamine Receptor mRNA Expression in Human Striatum and Neocortex. Neuropsychopharmacology, 1996, 15, 17-29.	2.8	238
50	Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Human Molecular Genetics, 2004, 13, 609-616.	1.4	237
51	Primary structure and tissue distribution of the orphanin FQ precursor Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8677-8682.	3.3	235
52	Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. Journal of Neuroscience, 1993, 13, 1258-1279.	1.7	234
53	Glucocorticoid receptor overexpression in forebrain: A mouse model of increased emotional lability. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11851-11856.	3.3	229
54	Corticosteroids regulate brain hippocampal 5-HT1A receptor mRNA expression. Journal of Neuroscience, 1993, 13, 914-923.	1.7	228

4

#	Article	IF	CITATIONS
55	Immunocytochemical localization of methionine enkephalin: Preliminary observations. Life Sciences, 1977, 21, 733-738.	2.0	225
56	Amphetamine-Induced Behavior, Dopamine Release, and c- <i>fos</i> mRNA Expression: Modulation by Environmental Novelty. Journal of Neuroscience, 1998, 18, 10579-10593.	1.7	217
57	Cloning and expression of a protein-tyrosine-phosphatase Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1501-1505.	3.3	213
58	Interaction between α-Melanocyte-Stimulating Hormone and Corticotropin-Releasing Hormone in the Regulation of Feeding and Hypothalamo-Pituitary-Adrenal Responses. Journal of Neuroscience, 2003, 23, 7863-7872.	1.7	207
59	Gender-Specific Gene Expression in Post-Mortem Human Brain: Localization to Sex Chromosomes. Neuropsychopharmacology, 2004, 29, 373-384.	2.8	206
60	Individual differences in the attribution of incentive salience to a reward-related cue: Influence on cocaine sensitization. Behavioural Brain Research, 2008, 186, 48-56.	1.2	206
61	Involvement of the Bed Nucleus of the Stria Terminalis in Tonic Regulation of Paraventricular Hypothalamic CRH and AVP mRNA Expression. Journal of Neuroendocrinology, 1994, 6, 433-442.	1.2	204
62	Neuroendocrine and Behavioral Responses and Brain Pattern of c-fos Induction Associated with Audiogenic Stress. Journal of Neuroendocrinology, 2003, 9, 577-588.	1.2	197
63	Vasopressin mRNA regulation in individual hypothalamic nuclei: a northern and in situ hybridization analysis. Journal of Neuroscience, 1986, 6, 1685-1694.	1.7	192
64	Distribution of D2 dopamine receptor mRNA in rat brain Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 7625-7628.	3.3	189
65	Mitochondrial Variants in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. PLoS ONE, 2009, 4, e4913.	1.1	187
66	Selective Breeding for Divergence in Novelty-seeking Traits: Heritability and Enrichment in Spontaneous Anxiety-related Behaviors. Behavior Genetics, 2006, 36, 697-712.	1.4	186
67	Marijuana and Medicine: Assessing the Science Base: A Summary of the 1999 Institute of Medicine Report. Archives of General Psychiatry, 2000, 57, 547-552.	13.8	186
68	Physiological and Anatomical Circuitry between Agouti-Related Protein and Leptin Signaling*. Endocrinology, 1999, 140, 2387-2397.	1.4	184
69	The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain. Neuroscience, 1985, 14, 1011-1024.	1.1	177
70	Contribution of the Ventral Subiculum to Inhibitory Regulation of the Hypothalamo-Pituitary-Adrenocortical Axis. Journal of Neuroendocrinology, 1995, 7, 475-482.	1.2	175
71	A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience, 1992, 46, 959-971.	1.1	174
72	Differential expression of protein phosphatase 1 isoforms in mammalian brain. Journal of Neuroscience, 1995, 15, 3375-3389.	1.7	171

#	Article	IF	CITATIONS
73	Cellular localization and distribution of the cloned mu and kappa opioid receptors in rat gastrointestinal tract. Neuroscience, 1997, 81, 579-591.	1.1	166
74	Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity. Neuropsychopharmacology, 2015, 40, 2113-2123.	2.8	164
75	Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Molecular Psychiatry, 2006, 11, 663-679.	4.1	162
76	A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience, 1991, 45, 359-371.	1.1	161
77	Dynorphin immunocytochemical localization in brain and peripheral nervous system: preliminary studies Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 1260-1263.	3.3	160
78	Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder. Molecular Psychiatry, 2015, 20, 48-55.	4.1	157
79	Opiate binding properties of naturally occurring N- and C-Terminus modified beta-endorphins. Peptides, 1981, 2, 289-292.	1.2	156
80	Dopamine Receptor Gene Expression in the Human Medial Temporal Lobe. Neuropsychopharmacology, 1994, 10, 239-248.	2.8	156
81	Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. Journal of Comparative Neurology, 1996, 368, 88-99.	0.9	156
82	Distribution of D5 dopamine receptor mRNA in rat brain. Neuroscience Letters, 1992, 145, 209-212.	1.0	155
83	Pharmacological and anatomical evidence of selective μ, Î′, and χ opioid receptor binding in rat brain. Brain Research, 1986, 399, 69-79.	1.1	154
84	Evidence that β-endorphin is synthesized in cells in the nucleus tractus solitarius: detection of POMC mRNA. Brain Research, 1992, 587, 269-275.	1.1	153
85	Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: A double in situ hybridization study. Journal of Comparative Neurology, 1995, 361, 57-76.	0.9	153
86	Regulatory Mechanisms of Corticotropin-Releasing Hormone and Vasopressin Gene Expression in the Hypothalamus. Journal of Neuroendocrinology, 2004, 16, 348-355.	1.2	152
87	Endogenous opioids: overview and current issues. Drug and Alcohol Dependence, 1998, 51, 127-140.	1.6	151
88	κ1 Receptor mRNA Distribution in the Rat CNS: Comparison to κ Receptor Binding and Prodynorphin mRNA. Molecular and Cellular Neurosciences, 1994, 5, 124-144.	1.0	149
89	Social defeat alters the acquisition of cocaine self-administration in rats: role of individual differences in cocaine-taking behavior. Psychopharmacology, 2001, 158, 382-387.	1.5	149
90	Telencephalic enkephalinergic systems in the rat brain. Journal of Neuroscience, 1983, 3, 844-855.	1.7	143

#	Article	IF	CITATIONS
91	Molecular Cloning of a Mineralocorticoid (Type I) Receptor Complementary DNA from Rat Hippocampus. Molecular Endocrinology, 1989, 3, 1877-1885.	3.7	143
92	Brainstem Substrates of Sympatho-Motor Circuitry Identified Using Trans-Synaptic Tracing with Pseudorabies Virus Recombinants. Journal of Neuroscience, 2003, 23, 4657-4666.	1.7	142
93	Immunohistochemical localization of the cloned $\hat{I}^{e}1$ receptor in the rat CNS and pituitary. Neuroscience, 1996, 71, 671-690.	1.1	141
94	Distribution of opioid peptides in the preoptic region: Immunohistochemical evidence for a steroid-sensitive enkephalin sexual dimorphism. Journal of Comparative Neurology, 1988, 276, 442-459.	0.9	140
95	Coordinate Expression of Hypothalamic Pro-Dynorphin and Pro-Vasopressin mRNAs with Osmotic Stimulation. Neuroendocrinology, 1986, 44, 222-228.	1.2	138
96	<i>In Situ</i> Hybridization Analysis of Arginine Vasopressin Gene Transcription Using Intron-Specific Probes. Molecular Endocrinology, 1991, 5, 1447-1456.	3.7	137
97	The Fibroblast Growth Factor Family: Neuromodulation of Affective Behavior. Neuron, 2012, 76, 160-174.	3.8	137
98	Relation between the Hypothalamic-Pituitary-Thyroid (HPT) Axis and the Hypothalamic-Pituitary-Adrenal (HPA) Axis during Repeated Stress. Neuroendocrinology, 2005, 81, 183-192.	1.2	136
99	Spongiform Degeneration in mahoganoid Mutant Mice. Science, 2003, 299, 710-712.	6.0	135
100	Microarray Technology: A Review of New Strategies to Discover Candidate Vulnerability Genes in Psychiatric Disorders. American Journal of Psychiatry, 2003, 160, 657-666.	4.0	134
101	A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions. Neuroscience, 2011, 196, 80-96.	1.1	134
102	A New Role for FGF2 as an Endogenous Inhibitor of Anxiety. Journal of Neuroscience, 2009, 29, 6379-6387.	1.7	132
103	Delta opioid receptor mRNA distribution in the brain: Comparison to delta receptor binding and proenkephalin mRNA. Journal of Chemical Neuroanatomy, 1993, 6, 351-362.	1.0	131
104	Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. Journal of Comparative Neurology, 1999, 406, 503-47.	0.9	131
105	Selective forebrain fiber tract lesions implicate ventral hippocampal structures in tonic regulation of paraventricular nucleus corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA expression. Brain Research, 1992, 592, 228-238.	1.1	129
106	Hormonal Evidence for Altered Responsiveness to Social Stress in Major Depression. Neuropsychopharmacology, 2000, 23, 411-418.	2.8	129
107	A biochemical function for attractin in agouti-induced pigmentation and obesity. Nature Genetics, 2001, 27, 40-47.	9.4	129
108	Primary astroglial cultures derived from several rat brain regions differentially express μ, δ and κ opioid receptor mRNA. Molecular Brain Research, 1995, 34, 209-220.	2.5	125

#	Article	IF	CITATIONS
109	Persistent Alterations in Cognitive Function and Prefrontal Dopamine D2 Receptors Following Extended, but Not Limited, Access to Self-Administered Cocaine. Neuropsychopharmacology, 2008, 33, 2969-2980.	2.8	122
110	Antecedents and consequences of drug abuse in rats selectively bred for high and low response to novelty. Neuropharmacology, 2014, 76, 425-436.	2.0	121
111	Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat. Journal of Neuroscience, 1986, 6, 1220-1226.	1.7	117
112	Direct Evidence of Nitric Oxide Presence within Mitochondria. Biochemical and Biophysical Research Communications, 2000, 272, 129-133.	1.0	116
113	Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. Journal of Psychiatric Research, 2013, 47, 1215-1221.	1.5	116
114	Novelty-seeking behavior predicts vulnerability in a rodent model of depression. Physiology and Behavior, 2011, 103, 210-216.	1.0	114
115	Environmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behavioural Brain Research, 1999, 103, 203-209.	1.2	113
116	The Fibroblast Growth Factor System and Mood Disorders. Biological Psychiatry, 2006, 59, 1128-1135.	0.7	112
117	Antidepressant-like effects of intracerebroventricular FGF2 in rats. Brain Research, 2008, 1224, 63-68.	1.1	112
118	Methodological considerations for gene expression profiling of human brain. Journal of Neuroscience Methods, 2007, 163, 295-309.	1.3	111
119	Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. Journal of Comparative Neurology, 1999, 412, 563-605.	0.9	108
120	Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1beta. Journal of Comparative Neurology, 1999, 413, 113-28.	0.9	108
121	Psychomotor stimulant- and opiate-induced c-fos mRNA expression patterns in the rat forebrain: Comparisons between acute drug treatment and a drug challenge in sensitized animals. Neurochemical Research, 1996, 21, 1425-1435.	1.6	105
122	Amphetamine and cocaine induce different patterns of c-fosmRNA expression in the striatum and subthalamic nucleus depending on environmental context. European Journal of Neuroscience, 2001, 13, 1977-1983.	1.2	105
123	Key Residues Defining the μâ€Opioid Receptor Binding Pocket: A Siteâ€Directed Mutagenesis Study. Journal of Neurochemistry, 1997, 68, 344-353.	2.1	105
124	Maternal deprivation regulates serotonin 1A and 2A receptors in the infant rat. Brain Research, 2000, 855, 76-82.	1.1	102
125	Environmental Novelty Differentially Affects c-fosmRNA Expression Induced by Amphetamine or Cocaine in Subregions of the Bed Nucleus of the Stria Terminalis and Amygdala. Journal of Neuroscience, 2001, 21, 732-740.	1.7	102
126	β-endorphin immunoreactivity in rat and human blood: Radioimmunoassay, comparative levels and physiological alterations. Life Sciences, 1979, 24, 1659-1665.	2.0	101

#	Article	IF	CITATIONS
127	Evaluation of Affymetrix Gene Chip sensitivity in rat hippocampal tissue using SAGE analysis*. European Journal of Neuroscience, 2002, 16, 409-413.	1.2	101
128	Differential Expression of c―fos mRNA Within Neurocircuits of Male Hamsters Exposed to Acute or Chronic Defeat. Journal of Neuroendocrinology, 1999, 11, 547-559.	1.2	100
129	Nociceptin/orphanin FQ regulates neuroendocrine function of the limbic–hypothalamic–pituitary–adrenal axis. Neuroscience, 2001, 102, 541-553.	1.1	100
130	Regulation of hypothalamic magnocellular neuropeptides and their mRNAs in the Brattleboro rat: coordinate responses to further osmotic challenge. Journal of Neuroscience, 1988, 8, 3785-3796.	1.7	99
131	Differential Regulation of Corticotropin-Releasing Hormone and Vasopressin Gene Transcription in the Hypothalamus by Norepinephrine. Journal of Neuroscience, 1999, 19, 5464-5472.	1.7	99
132	Chronic electroconvulsive shock treatment elicits up-regulation of CRF and AVP mRNA in select populations of neuroendocrine neurons. Brain Research, 1989, 501, 235-246.	1.1	98
133	Transcriptional Profiling of the Developing Rat Brain Reveals That the Most Dramatic Regional Differentiation in Gene Expression Occurs Postpartum. Journal of Neuroscience, 2006, 26, 345-353.	1.7	95
134	Lateral hypothalamic innervation of the cerebral cortex: Immunoreactive staining for a peptide resembling but immunochemically distinct from pituitary/arcuate α-melanocyte stimulating hormone. Brain Research Bulletin, 1986, 16, 107-120.	1.4	93
135	Expression of α _{1b} Adrenoceptor mRNA in Corticotropin-Releasing Hormone-Containing Cells of the Rat Hypothalamus and Its Regulation by Corticosterone. Journal of Neuroscience, 1999, 19, 10098-10106.	1.7	93
136	Estrogen receptor \hat{I}^2 in the paraventricular nucleus of hypothalamus regulates the neuroendocrine response to stress and is regulated by corticosterone. Neuroscience, 2003, 121, 837-845.	1.1	93
137	Glucocorticoid and mineralocorticoid receptor expression in the human hippocampus in major depressive disorder. Journal of Psychiatric Research, 2013, 47, 307-314.	1.5	93
138	Direct evidence that the glucocorticoid receptor binds to hsp90 at or near the termination of receptor translation in vitro. Journal of Biological Chemistry, 1989, 264, 19815-21.	1.6	93
139	The Role of Mineralocorticoid Receptors in Hypothalamic-Pituitary-Adrenal Axis Regulation in Humans ¹ . Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3339-3345.	1.8	92
140	Molecular Analysis of the X11–mLin-2/CASK Complex in Brain. Journal of Neuroscience, 1999, 19, 1307-1316.	1.7	92
141	Socially-induced brain â€~fertilization': play promotes brain derived neurotrophic factor transcription in the amygdala and dorsolateral frontal cortex in juvenile rats. Neuroscience Letters, 2003, 341, 17-20.	1.0	92
142	Detection of proopiomelanocortin mRNA by in situ hybridization with an oligonucleotide probe Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5419-5423.	3.3	90
143	Environmental context modulates the ability of cocaine and amphetamine to induce c-fos mRNA expression in the neocortex, caudate nucleus, and nucleus accumbens. Brain Research, 2001, 920, 106-116.	1.1	90
144	Dopaminergic Regulation of Progesterone Receptors: Brain D5 Dopamine Receptors Mediate Induction of Lordosis by D1-Like Agonists in Rats. Journal of Neuroscience, 1996, 16, 4823-4834.	1.7	88

#	Article	IF	CITATIONS
145	Evolutionary Sequence Modeling for Discovery of Peptide Hormones. PLoS Computational Biology, 2009, 5, e1000258.	1.5	88
146	Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats. Brain Research, 2006, 1069, 172-181.	1.1	87
147	A Chimeric Study of the Molecular Basis of Affinity and Selectivity of the κ and the δ Opioid Receptors Journal of Biological Chemistry, 1995, 270, 12730-12736.	1.6	86
148	Estrogen receptor \hat{I}_{\pm} and \hat{I}^2 mRNA expressions by proliferating and differentiating cells in the adult rat dentate gyrus and subventricular zone. Neuroscience, 2005, 134, 847-856.	1.1	86
149	Fibroblast growth factor-2 (FGF2) augmentation early in life alters hippocampal development and rescues the anxiety phenotype in vulnerable animals. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8021-8025.	3.3	86
150	Regulation of 5-HT Receptors and the Hypothalamic-Pituitary-Adrenal Axis Annals of the New York Academy of Sciences, 1997, 836, 106-134.	1.8	84
151	Nociceptin/orphanin FQ and opioid receptor-like receptor mRNA expression in dopamine systems. Journal of Comparative Neurology, 2002, 444, 358-368.	0.9	82
152	Immunohistochemical localization of aminopeptidase M in rat brain and periphery: Relationship of enzyme localization and enkephalin metabolism. Peptides, 1987, 8, 523-532.	1.2	81
153	Stress-induced changes in primate prefrontal profiles of gene expression. Molecular Psychiatry, 2007, 12, 1089-1102.	4.1	80
154	Evidence for homologous actions of pro-opiocortin products. Science, 1980, 210, 1247-1249.	6.0	79
155	Pro-dynorphin peptides are found in the same neurons throughout rat brain: immunocytochemical study Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 891-894.	3.3	79
156	Multiple HPA profiles in endogenous depression: Effect of age and sex on cortisol and beta-endorphin. Biological Psychiatry, 1993, 33, 73-85.	0.7	79
157	Mu and kappa opioid receptors in periaqueductal gray and rostral ventromedial medulla. NeuroReport, 1998, 9, 1777-1781.	0.6	79
158	Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biological Psychiatry, 2000, 47, 22-28.	0.7	79
159	Evidence for alterations of the glial syncytial function in major depressive disorder. Journal of Psychiatric Research, 2016, 72, 15-21.	1.5	79
160	The 5-HT7 receptor: Role in novel object discrimination and relation to novelty-seeking behavior. Neuroscience, 2007, 149, 192-202.	1.1	78
161	Gene Expression Changes in the Prefrontal Cortex, Anterior Cingulate Cortex and Nucleus Accumbens of Mood Disorders Subjects That Committed Suicide. PLoS ONE, 2012, 7, e35367.	1.1	77
162	Opioid receptor expression in the rat gastrointestinal tract: a quantitative study with comparison to the brain. Molecular Brain Research, 1997, 46, 1-8.	2.5	76

#	Article	IF	CITATIONS
163	Rostral Elements of Sympatho-motor Circuitry: A Virally Mediated Transsynaptic Tracing Study. Journal of Neuroscience, 2006, 26, 3423-3433.	1.7	76
164	Variable telomere length across post-mortem human brain regions and specific reduction in the hippocampus of major depressive disorder. Translational Psychiatry, 2015, 5, e636-e636.	2.4	76
165	Moving from the Orphanin FQ Receptor to an Opioid Receptor Using Four Point Mutations. Journal of Biological Chemistry, 1996, 271, 32016-32020.	1.6	75
166	Combining laser capture microdissection with quantitative real-time PCR: Effects of tissue manipulation on RNA quality and gene expression. Journal of Neuroscience Methods, 2006, 153, 71-85.	1.3	75
167	Localization and Quantification of Pro-Opiomelanocortin mRNA and Glucocorticoid Receptor mRNA in Pituitaries of Suicide Victims. Neuroendocrinology, 1992, 56, 491-501.	1.2	74
168	Differential expression of autoreceptors in the ascending dopamine systems of the human brain Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8297-8301.	3.3	74
169	Serotonin 1A receptor messenger RNA regulation in the hippocampus after acute stress. Biological Psychiatry, 1999, 45, 934-937.	0.7	74
170	Impact of cocaine on adult hippocampal neurogenesis in an animal model of differential propensity to drug abuse. European Journal of Neuroscience, 2010, 31, 79-89.	1.2	73
171	Immunocytochemical localization of pro-opiomelanocortin-derived peptides in the adult rat spinal cord. Brain Research, 1986, 378, 28-35.	1.1	72
172	Proopiomelanocortin peptide immunocytochemistry in rhesus monkey brain. Brain Research Bulletin, 1984, 13, 785-800.	1.4	71
173	Diurnal Corticotropin-Releasing Hormone mRNA Variation in the Hypothalamus Exhibits a Rhythm Distinct from That of Plasma Corticosterone. Neuroendocrinology, 1992, 55, 74-83.	1.2	70
174	Environmental context and drug history modulate amphetamine-induced c-fos mrna expression in the basal ganglia, central extended amygdala, and associated limbic forebrain. Neuroscience, 2003, 120, 551-571.	1.1	70
175	Endogenous opioids upregulate brain-derived neurotrophic factor mRNA through δ- and µ-opioid receptors independent of antidepressant-like effects. European Journal of Neuroscience, 2006, 23, 984-994.	1.2	69
176	Expression of peptidylglycine alpha-amidating monooxygenase (EC 1.14.17.3) in the rat central nervous system. Journal of Neuroscience, 1992, 12, 222-234.	1.7	68
177	Serotonin transporter binding sites and mRNA levels in depressed persons committing suicide. Biological Psychiatry, 1997, 41, 1156-1164.	0.7	68
178	The Effect of Stressor Controllability on Stress-Induced Neuropeptide mRNA Expression within the Paraventricular Nucleus of the Hypothalamus. Journal of Neuroendocrinology, 2001, 11, 121-128.	1.2	68
179	Overexpressing the Glucocorticoid Receptor in Forebrain Causes an Aging-Like Neuroendocrine Phenotype and Mild Cognitive Dysfunction. Journal of Neuroscience, 2007, 27, 8836-8844.	1.7	68
180	G protein-linked signaling pathways in bipolar and major depressive disorders. Frontiers in Genetics, 2013, 4, 297.	1.1	67

#	Article	IF	CITATIONS
181	Analysis of 5-HT6 and 5-HT7 receptor gene expression in rats showing differences in novelty-seeking behavior. Neuroscience, 2007, 147, 428-438.	1.1	66
182	Anatomical and biochemical studies of the opioid peptides and related substances in the brain. Peptides, 1980, 1, 11-20.	1.2	65
183	Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis. PLoS ONE, 2018, 13, e0200003.	1.1	65
184	Regulation of Hippocampal 5-HT1A Receptor Gene Expression by Dexamethasone. Neuropsychopharmacology, 1994, 10, 215-222.	2.8	64
185	Primary structure and functional expression of a guinea pig kappa opioid (dynorphin) receptor Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3779-3783.	3.3	63
186	Gene chips and arrays revealed: a primer on their power and their uses. Biological Psychiatry, 1999, 45, 533-543.	0.7	63
187	Stress during adolescence alters behavioral sensitization to amphetamine. Neuroscience, 2002, 113, 395-400.	1.1	63
188	Interleukinâ€1βâ€Mediated Regulation of μâ€Opioid Receptor mRNA in Primary Astrocyteâ€Enriched Cultures. Journal of Neurochemistry, 1996, 66, 425-428.	2.1	63
189	The δ-Opioid Receptor Agonist (+)BW373U86 Regulates BDNF mRNA Expression in Rats. Neuropsychopharmacology, 2004, 29, 649-659.	2.8	63
190	Diurnal Regulation of Glucocorticoid Receptor and Mineralocorticoid Receptor mRNAs in Rat Hippocampus. Molecular and Cellular Neurosciences, 1993, 4, 181-190.	1.0	62
191	Diurnal CRH mRNA Rhythm in the Hypothalamus: Decreased Expression in the Evening Is Not Dependent on Endogenous Glucocorticoids. Neuroendocrinology, 1993, 57, 96-105.	1.2	62
192	3xTg-AD Mice Exhibit an Activated Central Stress Axis During Early-Stage Pathology. Journal of Alzheimer's Disease, 2012, 33, 407-422.	1.2	62
193	Localization of mu-opioid receptors on amygdaloid projection neurons in the parabrachial nucleus of the rat. Brain Research, 1999, 827, 198-204.	1.1	61
194	The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. Journal of Psychiatric Research, 2016, 82, 58-67.	1.5	61
195	Abnormal essential fatty acid levels in plasma of women with premenstrual syndrome. American Journal of Obstetrics and Gynecology, 1984, 150, 363-366.	0.7	60
196	Prenatal stress does not alter innate novelty-seeking behavioral traits, but differentially affects individual differences in neuroendocrine stress responsivity. Psychoneuroendocrinology, 2008, 33, 162-177.	1.3	60
197	AMPA Receptor Binding and Subunit mRNA Expression in Prefrontal Cortex and Striatum of Elderly Schizophrenics. Neuropsychopharmacology, 1998, 19, 278-286.	2.8	60
198	Physiological and Anatomical Circuitry between Agouti-Related Protein and Leptin Signaling. Endocrinology, 1999, 140, 2387-2397.	1.4	59

#	Article	IF	CITATIONS
199	Effects of cocaine on dopamine receptor gene expression: A study in the postmortem human brain. Biological Psychiatry, 1993, 34, 348-355.	0.7	58
200	Dysregulated fibroblast growth factor (FGF) signaling in neurological and psychiatric disorders. Seminars in Cell and Developmental Biology, 2016, 53, 136-143.	2.3	58
201	Differential distribution of messenger RNAs for cathepsins B, L and S in adult rat brain: An in situ hybridization study. Neuroscience, 1994, 59, 729-738.	1.1	56
202	The fibroblast growth factor system is downregulated following social defeat. Neuroscience Letters, 2008, 430, 147-150.	1.0	56
203	The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. European Neuropsychopharmacology, 2012, 22, 607-613.	0.3	56
204	Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2861-70.	3.3	56
205	Region specific expression of furin mRNA in the rat brain. Neuroscience Letters, 1993, 149, 27-30.	1.0	55
206	Temporal and anatomical distribution of nitric oxide synthase mRNA expression and nitric oxide production during central nervous system inflammation. Brain Research, 2000, 852, 239-246.	1.1	53
207	The search for the neurobiological basis of vulnerability to drug abuse: using microarrays to investigate the role of stress and individual differences. Neuropharmacology, 2004, 47, 111-122.	2.0	53
208	Lesions of the Medial Geniculate Nuclei Specifically Block Corticosterone Release and Induction of c-fosmRNA in the Forebrain Associated with Audiogenic Stress in Rats. Journal of Neuroscience, 1997, 17, 5979-5992.	1.7	52
209	Individual differences in novelty-seeking and emotional reactivity correlate with variation in maternal behavior. Hormones and Behavior, 2007, 51, 655-664.	1.0	52
210	Distinct populations of presympatheticâ€premotor neurons express orexin or melaninâ€concentrating hormone in the rat lateral hypothalamus. Journal of Comparative Neurology, 2007, 505, 586-601.	0.9	52
211	High novelty-seeking predicts aggression and gene expression differences within defined serotonergic cell groups. Brain Research, 2011, 1419, 34-45.	1.1	52
212	Glutamate transporters: A key piece in the glutamate puzzle of major depressive disorder. Journal of Psychiatric Research, 2013, 47, 1150-1156.	1.5	52
213	Time course of short-term and long-term orexigenic effects of Agouti-related protein (86-132). NeuroReport, 2001, 12, 1281-1284.	0.6	51
214	Cloning and expression of the A2a adenosine receptor from guinea pig brain. Neurochemical Research, 1994, 19, 613-621.	1.6	50
215	Short-Hairpin RNA Silencing of Endogenous Fibroblast Growth Factor 2 in Rat Hippocampus Increases Anxiety Behavior. Biological Psychiatry, 2011, 69, 534-540.	0.7	50
216	Developmental underpinnings of differences in rodent noveltyâ€seeking and emotional reactivity. European Journal of Neuroscience, 2011, 34, 994-1005.	1.2	50

#	Article	IF	CITATIONS
217	Nitric oxide in the stress axis. Histology and Histopathology, 1998, 13, 1243-52.	0.5	50
218	The "chip―as a specific genetic tool. Biological Psychiatry, 2000, 48, 1147-1156.	0.7	49
219	DNA microarray analysis of functionally discrete human brain regions reveals divergent transcriptional profiles. Neurobiology of Disease, 2003, 14, 240-250.	2.1	49
220	Inter-individual differences in novelty-seeking behavior in rats predict differential responses to desipramine in the forced swim test. Psychopharmacology, 2008, 198, 333-340.	1.5	49
221	Fibroblast growth factor 9 is a novel modulator of negative affect. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11953-11958.	3.3	49
222	Differential effects of social defeat in rats with high and low locomotor response to novelty. Neuroscience, 2011, 183, 81-89.	1.1	48
223	Relationship of presympathetic-premotor neurons to the serotonergic transmitter system in the rat brainstem. Journal of Comparative Neurology, 2006, 499, 882-896.	0.9	47
224	Regulation of nitric oxide synthase messenger RNA expression in the rat hippocampus by glucocorticoids. Neuroscience, 1998, 87, 439-446.	1.1	46
225	Interaction of opiate peptide and noradrenalin systems: Light microscopic studies. Peptides, 1980, 1, 23-30.	1.2	45
226	Two precursors of melanin-concentrating hormone: DNA sequence analysis and in situ immunochemical localization Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4292-4296.	3.3	45
227	Creating a Functional Opioid Alkaloid Binding Site in the Orphanin FQ Receptor through Site-Directed Mutagenesis. Molecular Pharmacology, 1998, 53, 772-777.	1.0	45
228	The effect of adrenalectomy on stress-induced c-fos mRNA expression in the rat brain. Brain Research, 1996, 706, 137-144.	1.1	44
229	Early-Life Forebrain Glucocorticoid Receptor Overexpression Increases Anxiety Behavior and Cocaine Sensitization. Biological Psychiatry, 2012, 71, 224-231.	0.7	43
230	FGF2 is a target and a trigger of epigenetic mechanisms associated with differences in emotionality: Partnership with H3K9me3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11834-11839.	3.3	43
231	Time of origin of opioid peptide-containing neurons in the rat hypothalamus. Journal of Comparative Neurology, 1985, 236, 538-546.	0.9	42
232	Stress regulation of mineralocorticoid receptor heteronuclear RNA in rat hippocampus. Brain Research, 1995, 677, 243-249.	1.1	42
233	Decreased Proliferation of Adult Hippocampal Stem Cells During Cocaine Withdrawal: Possible Role of the Cell Fate Regulator FADD. Neuropsychopharmacology, 2011, 36, 2303-2317.	2.8	42
234	Distribution of Mahogany/Attractin mRNA in the rat central nervous system. FEBS Letters, 1999, 462, 101-107.	1.3	41

#	Article	IF	CITATIONS
235	Altered choroid plexus gene expression in major depressive disorder. Frontiers in Human Neuroscience, 2014, 8, 238.	1.0	40
236	Some perspectives on monoamine-opioid peptide interaction in rat central nervous system. Brain Research Bulletin, 1982, 9, 441-462.	1.4	39
237	Dynorphin (1–17): Lack of analgesia but evidence for non-opiate electrophysiological and motor effects. Life Sciences, 1982, 31, 1821-1824.	2.0	39
238	Characterization of proopiomelanocortin mRNA detected by in situ hybridization. Journal of Neuroscience, 1986, 6, 38-42.	1.7	39
239	Orphanin FQ-induced hyperphagia is mediated by corticosterone and central glucocorticoid receptors. Neuroscience, 2002, 115, 637-643.	1.1	39
240	The ability of amphetamine to evoke arc (Arg 3.1) mRNA expression in the caudate, nucleus accumbens and neocortex is modulated by environmental context. Brain Research, 2002, 930, 30-36.	1.1	39
241	Amphetamineâ€induced câ€ <i>fos</i> mRNA expression in the caudateâ€putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. Journal of Neurochemistry, 2003, 85, 105-114.	2.1	39
242	Uneven balance of power between hypothalamic peptidergic neurons in the control of feeding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9489-E9498.	3.3	39
243	Mitochondrial Mutations in Subjects with Psychiatric Disorders. PLoS ONE, 2015, 10, e0127280.	1.1	39
244	Amphetamine-evoked c-fos mRNA expression in the caudate-putamen: the effects of DA and NMDA receptor antagonists vary as a function of neuronal phenotype and environmental context. Journal of Neurochemistry, 2004, 86, 33-44.	2.1	38
245	Further characterization of the extra-arcuate alpha-melanocyte stimulating hormone-like material in hypothalamus: Biochemical and anatomical studies. Neuropeptides, 1986, 7, 291-313.	0.9	37
246	Proenkephalin Messenger RNA Is Expressed Both in the Rat Anterior and Posterior Pituitary. Neuroendocrinology, 1990, 51, 444-448.	1.2	37
247	Norepinephrine-induced CRH and AVP gene transcription within the hypothalamus: differential regulation by corticosterone. Molecular Brain Research, 2001, 88, 62-73.	2.5	37
248	Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain. Journal of Biomedical Science, 2005, 12, 209-217.	2.6	37
249	Effect of Cocaine on Fas-Associated Protein with Death Domain in the Rat Brain: Individual Differences in a Model of Differential Vulnerability to Drug Abuse. Neuropsychopharmacology, 2009, 34, 1123-1134.	2.8	37
250	The carboxy terminus of the precursor to vasopressin and neurophysin: immunocytochemistry in rat brain. Science, 1982, 217, 853-855.	6.0	35
251	Visualization of opiate receptors and opioid peptides in sequential brain sections. Life Sciences, 1982, 31, 1347-1350.	2.0	35
252	Glucocorticoid regulation of hippocampal oxytocin receptor binding. Brain Research, 1994, 650, 317-322.	1.1	35

15

#	Article	IF	CITATIONS
253	A 6-Hydroxydopamine lesion of the mesostriatal dopamine system decreases the expression of corticotropin releasing hormone and neurotensin mRNAs in the amygdala and bed nucleus of the stria terminalis. Brain Research, 2002, 945, 151-159.	1.1	35
254	β1 Adrenergic Receptors in the Bed Nucleus of Stria Terminalis Mediate Differential Responses to Opiate Withdrawal. Neuropsychopharmacology, 2007, 32, 589-599.	2.8	34
255	Neural and environmental factors impacting maternal behavior differences in high- versus low-novelty-seeking rats. Hormones and Behavior, 2010, 57, 463-473.	1.0	33
256	Exploratory locomotion, a predictor of addiction vulnerability, is oligogenic in rats selected for this phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13107-13115.	3.3	33
257	Anatomical relationship between opioid peptides and receptors in rhesus monkey brain. Brain Research Bulletin, 1984, 13, 801-812.	1.4	32
258	Postdexamethasone plasma cortisol and \hat{l}^2 -endorphin levels in depression: Relationship to severity of illness. Biological Psychiatry, 1987, 22, 1137-1150.	0.7	32
259	Neonatal fibroblast growth factor treatment enhances cocaine sensitization. Pharmacology Biochemistry and Behavior, 2012, 103, 6-17.	1.3	32
260	Connections of some auditory-responsive posterior thalamic nuclei putatively involved in activation of the hypothalamo-pituitary-adrenocortical axis in response to audiogenic stress in rats: an anterograde and retrograde tract tracing study combined with Fos expression. Journal of Comparative Neurology, 2000, 423, 474-91.	0.9	32
261	Effects of Low Dose Ovine Corticotropin-Releasing Hormone in Humans: Endocrine Relationships andβ: Endorphin/β-Lipotropin Responses*. Journal of Clinical Endocrinology and Metabolism, 1988, 66, 10-15.	1.8	31
262	Gene expression profiling of neurochemically defined regions of the human brain by in situ hybridization-guided laser capture microdissection. Journal of Neuroscience Methods, 2009, 178, 46-54.	1.3	31
263	Atypical prodynorphin gene expression in corticosteroid-producing cells of the rat adrenal gland Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1320-1324.	3.3	30
264	Correlation of estrogen Î ² -receptor messenger RNA with endogenous levels of plasma estradiol and progesterone in the female rat hypothalamus, the bed nucleus of stria terminalis and the medial amygdala. Molecular Brain Research, 2002, 106, 30-41.	2.5	30
265	Chronic administration of the delta opioid receptor agonist (+)BW373U86 and antidepressants on behavior in the forced swim test and BDNF mRNA expression in rats. Psychopharmacology, 2005, 183, 31-40.	1.5	30
266	Evidence against changes in corticotroph CRF receptors in depressed patients. Biological Psychiatry, 1995, 37, 355-363.	0.7	29
267	Correlation between Changes in Stress-Inducec Corticosterone Secretion and GR mRNA Levels. Stress, 1997, 2, 101-112.	0.8	29
268	Expression patterns of corticotropinâ€releasing factor, arginine vasopressin, histidine decarboxylase, melaninâ€concentrating hormone, and orexin genes in the human hypothalamus. Journal of Comparative Neurology, 2010, 518, 4591-4611.	0.9	29
269	Pattern of forebrain activation in high novelty-seeking rats following aggressive encounter. Brain Research, 2011, 1422, 20-31.	1.1	29
270	Evidence of allelic imbalance in the schizophrenia susceptibility gene ZNF804A in human dorsolateral prefrontal cortex. Schizophrenia Research, 2014, 152, 111-116.	1.1	29

#	Article	IF	CITATIONS
271	Localization of neurons containing pro-opiomelanocortin-related peptides in the hypothalamus and midbrain of the lizard, Anolis carolinensis evidence for region-specific processing of l²-endorphin. Brain Research, 1984, 324, 384-389.	1.1	28
272	Colocalization of estrogen β-receptor messenger RNA with orphanin FQ, vasopressin and oxytocin in the rat hypothalamic paraventricular and supraoptic nuclei. Anatomy and Embryology, 2003, 206, 461-469.	1.5	28
273	Dynorphin is located throughout the CNS and is often co-localized with alpha-neo-endorphin. Life Sciences, 1982, 31, 1773-1776.	2.0	27
274	Colocalization of proenkephalin peptides in rat brain neurons. Brain Research, 1983, 279, 369-373.	1.1	27
275	Characterization of Pro-Opiomelanocortin cDNA from the Old World Monkey, Macaca nemestrina. DNA and Cell Biology, 1988, 7, 627-635.	5.1	27
276	Differential expression of vasopressin alleles in the Brattleboro heterozygote. Journal of Neuroscience, 1988, 8, 3797-3811.	1.7	27
277	Expression of Serotonin Transporter mRNA in Human Brainstem Raphe Nuclei. Neuropsychopharmacology, 1996, 15, 523-529.	2.8	27
278	Normal pituitary response to metyrapone in the morning in depressed patients: Implications for circadian regulation of corticotropin-releasing hormone secretion. Biological Psychiatry, 1997, 41, 1149-1155.	0.7	27
279	Immunocytochemical studies with antisera against Leu-enkephalin and an enkephalin-precursor fragment (BAM-22P) in the rat brain. Life Sciences, 1982, 31, 1879-1882.	2.0	26
280	Inborn differences in environmental reactivity predict divergent diurnal behavioral, endocrine, and gene expression rhythms. Psychoneuroendocrinology, 2012, 37, 256-269.	1.3	26
281	?-Endorphin/ACTH immunocytochemistry in the CNS of the lizardAnolis carolinensis: Evidence for a major mesencephalic cell group. Journal of Comparative Neurology, 1984, 229, 576-584.	0.9	25
282	Female CREBαδâ^' deficient mice show earlier age-related cognitive deficits than males. Neuroscience, 2007, 150, 260-272.	1.1	25
283	Neonatal FGF2 alters cocaine self-administration in the adult rat. Pharmacology Biochemistry and Behavior, 2009, 92, 100-104.	1.3	25
284	Adolescent cocaine exposure enhances goal-tracking behavior and impairs hippocampal cell genesis selectively in adult bred low-responder rats. Psychopharmacology, 2017, 234, 1293-1305.	1.5	25
285	Previous experience affects subsequent anxiety-like responses in rats bred for novelty seeking Behavioral Neuroscience, 2007, 121, 1113-1118.	0.6	24
286	SNPs on Chips: The Hidden Genetic Code in Expression Arrays. Biological Psychiatry, 2007, 61, 13-16.	0.7	24
287	Neuroanatomical and Functional Studies of Peptide Precursor-Processing Enyzmes. Enzyme, 1991, 45, 285-300.	0.7	23
288	Selectively Bred Rats Provide a Unique Model of Vulnerability to PTSD-Like Behavior and Respond Differentially to FGF2 Augmentation Early in Life. Neuropsychopharmacology, 2017, 42, 1706-1714.	2.8	23

#	Article	IF	CITATIONS
289	Development of hypothalamic opioid neurons: A combined immunocytochemical and [3H]thymidine autoradiographic study. Neuropeptides, 1985, 5, 477-480.	0.9	22
290	Short-Term Adrenalectomy Increases Glucocorticoid and Mineralocorticoid Receptor mRNA in Selective Areas of the Developing Hippocampus. Molecular and Cellular Neurosciences, 1993, 4, 455-471.	1.0	22
291	Effects of cocaine on D3 and D4 receptor expression in the human striatum. Biological Psychiatry, 1995, 38, 263-266.	0.7	22
292	Cocaine interacts with the novelty-seeking trait to modulate FGFR1 gene expression in the rat. Neuroscience Letters, 2008, 446, 105-107.	1.0	22
293	Long-term effects of cocaine experience on neuroplasticity in the nucleus accumbens core of addiction-prone rats. Neuroscience, 2013, 248, 571-584.	1.1	22
294	Splice-Break: exploiting an RNA-seq splice junction algorithm to discover mitochondrial DNA deletion breakpoints and analyses of psychiatric disorders. Nucleic Acids Research, 2019, 47, e59-e59.	6.5	22
295	Endorphins, beta-LPH, and ACTH: biochemical, pharmacological and anatomical studies. Advances in Biochemical Psychopharmacology, 1978, 18, 125-39.	0.1	22
296	Differential responses to morphine-induced analgesia in the tail-flick test. Behavioural Brain Research, 2008, 194, 146-151.	1.2	21
297	CREBalphadelta- deficient mice show inhibition and low activity in novel environments without changes in stress reactivity. European Journal of Neuroscience, 2004, 20, 503-513.	1.2	20
298	Protective effects of chronic mild stress during adolescence in the low-novelty responder rat. Stress, 2016, 19, 133-138.	0.8	20
299	PRINCIPLES OF PSYCHONEUROENDOCRINOLOGY. Psychiatric Clinics of North America, 1998, 21, 259-276.	0.7	19
300	The CCK-system mediates adaptation to novelty-induced stress in the rat: A pharmacological evidence. Neuroscience Letters, 2007, 428, 27-32.	1.0	18
301	Lack of association to a NRG1 missense polymorphism in schizophrenia or bipolar disorder in a Costa Rican population. Schizophrenia Research, 2011, 131, 52-57.	1.1	18
302	Risk-assessment and Coping Strategies Segregate with Divergent Intrinsic Aerobic Capacity in Rats. Neuropsychopharmacology, 2011, 36, 390-401.	2.8	18
303	Fibroblast growth factor 2 regulates activity and gene expression of human postâ€mitotic excitatory neurons. Journal of Neurochemistry, 2018, 145, 188-203.	2.1	18
304	Opioid receptors: past, present and future. Trends in Neurosciences, 1995, 18, 69-70.	4.2	18
305	Effects of chronic cocaine exposure on corticotropin-releasing hormone binding protein in the central nucleus of the amygdala and bed nucleus of the stria terminalis. Neuroscience, 2004, 123, 1003-1009.	1.1	17
306	The CCK-system underpins novelty-seeking behavior in the rat: Gene expression and pharmacological analyses. Neuropeptides, 2008, 42, 245-253.	0.9	17

#	Article	IF	CITATIONS
307	The distribution of dopamine D2 receptor heteronuclear RNA (hnRNA) in the rat brain. Journal of Chemical Neuroanatomy, 1993, 6, 363-373.	1.0	16
308	Hippocampal mossy fibre terminal field size is differentially affected in a rat model of risk-taking behaviour. Behavioural Brain Research, 2004, 153, 7-14.	1.2	16
309	The Fibroblast Growth Factor Family and Mood Disorders. Novartis Foundation Symposium, 2008, 289, 94-100.	1.2	16
310	Identification of potential blood biomarkers associated with suicide in major depressive disorder. Translational Psychiatry, 2022, 12, 159.	2.4	16
311	Chapter 11 Cloning of kappa opioid receptors: functional significance and future directions. Progress in Brain Research, 1994, 100, 81-86.	0.9	15
312	Fibroblast Growth Factor-2: An Endogenous Antidepressant and Anxiolytic Molecule?. Biological Psychiatry, 2012, 72, 254-255.	0.7	15
313	Cognitive Control as a 5-HT1A-Based Domain That Is Disrupted in Major Depressive Disorder. Frontiers in Psychology, 2019, 10, 691.	1.1	15
314	Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Molecular Psychiatry, 2021, 26, 5239-5250.	4.1	15
315	Characterizing the behavioral and neuroendocrine features of susceptibility and resilience to social stress. Neurobiology of Stress, 2022, 17, 100437.	1.9	15
316	Analysis of opioid and non-opioid end products of pro-dynorphin in the substantia nigra of the rat. Neuropeptides, 1985, 5, 501-504.	0.9	14
317	Cloning and characterization of a pharmacologically distinct A1 adenosine receptor from guinea pig brain. Molecular Brain Research, 1994, 26, 143-155.	2.5	14
318	Dexamethasone exposure during the neonatal period alters ORL1 mRNA expression in the hypothalamic paraventricular nucleus and hippocampus of the adult rat. Developmental Brain Research, 2003, 146, 15-24.	2.1	14
319	Adaptation to single housing is dynamic: Changes in hormone levels, gene expression, signaling in the brain, and anxiety-like behavior in adult male C57Bl/6J mice. Hormones and Behavior, 2019, 114, 104541.	1.0	14
320	Genetic Liability for Internalizing Versus Externalizing Behavior Manifests in the Developing and Adult Hippocampus: Insight From a Meta-analysis of Transcriptional Profiling Studies in a Selectively Bred Rat Model. Biological Psychiatry, 2021, 89, 339-355.	0.7	14
321	Microcomputer-based three-dimensional reconstruction of in situ hybridization autoradiographs. Journal of Chemical Neuroanatomy, 1991, 4, 373-385.	1.0	13
322	Forebrain glucocorticoid receptor overexpression increases environmental reactivity and produces a stress-induced spatial discrimination deficit. Neuroscience, 2010, 169, 645-653.	1.1	13
323	Immunocytochemistry of the C-terminal peptide of propressophysin (CPP): Relationship to vasopressin, oxytocin and neurophysin. Neuropeptides, 1983, 3, 321-336.	0.9	12
324	Individual differences in the improvement of cocaine-induced place preference response by the 5-HT2C receptor antagonist SB242084 in rats. Psychopharmacology, 2012, 220, 731-740.	1.5	12

#	Article	IF	CITATIONS
325	Fibroblast growth factor 2 alters the oxytocin receptor in a developmental model of anxiety-like behavior in male rat pups. Hormones and Behavior, 2016, 86, 64-70.	1.0	12
326	Connective Tissue Growth Factor Is a Novel Prodepressant. Biological Psychiatry, 2018, 84, 555-562.	0.7	12
327	Blockade of the cholecystokinin CCK-2 receptor prevents the normalization of anxiety levels in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 96, 109761.	2.5	12
328	Sepsis survivor mice exhibit a behavioral endocrine syndrome with ventral hippocampal dysfunction. Psychoneuroendocrinology, 2020, 117, 104679.	1.3	12
329	Cryostat technique for central nervous system histofluorescence. Histochemistry, 1976, 50, 119-127.	1.9	11
330	Altered Ratios of Beta-Endorphin:Beta-Lipotropin Released from Anterior Lobe Corticotropes with Increased Secretory Drive Journal of Neuroendocrinology, 1993, 5, 121-126.	1.2	11
331	Binding and GTPÎ ³ S autoradiographic analysis of preproorphanin precursor peptide products at the ORL1 and opioid receptors. Journal of Chemical Neuroanatomy, 2003, 25, 233-247.	1.0	11
332	Upregulation of GAD65 mRNA in the medulla of the rat model of metabolic syndrome. Neuroscience Letters, 2007, 419, 178-183.	1.0	11
333	Utilizing a unique animal model to better understand human temperament. Current Opinion in Behavioral Sciences, 2017, 14, 108-114.	2.0	11
334	Hypothalamic dynorphin and vasopressin mRNA expression in normal and Brattleboro rats. Federation Proceedings, 1986, 45, 2323-7.	1.3	11
335	Differences in microglia morphological profiles reflect divergent emotional temperaments: insights from a selective breeding model. Translational Psychiatry, 2022, 12, 105.	2.4	10
336	Pituitary Regulation in Endogenous Depression. Progress in Brain Research, 1986, 65, 153-166.	0.9	9
337	Quantitative validation of immunofluorescence and lectin staining using reduced CLARITY acrylamide formulations. Brain Structure and Function, 2018, 223, 987-999.	1.2	9
338	Effects of early-life FGF2 on ultrasonic vocalizations (USVs) and the mu-opioid receptor in male Sprague-Dawley rats selectively-bred for differences in their response to novelty. Brain Research, 2019, 1715, 106-114.	1.1	9
339	Optimization and evaluation of fluorescence in situ hybridization chain reaction in cleared fresh-frozen brain tissues. Brain Structure and Function, 2021, 226, 481-499.	1.2	9
340	Cognitive performance is highly sensitive to prior experience in mice with a learning and memory deficit: Failure leads to more failure. Learning and Memory, 2005, 12, 461-471.	0.5	8
341	Basal microRNA expression patterns in reward circuitry of selectively bred high-responder and low-responder rats vary by brain region and genotype. Physiological Genomics, 2014, 46, 290-301.	1.0	8
342	Regional processing of the N- and C-terminal domains of proopiomelanocortin in monkey pituitary and brain. Neuropeptides, 1988, 11, 111-118.	0.9	7

#	Article	IF	CITATIONS
343	Pro-opiomelanocortin mRNA and peptide co-expression in the developing rat pituitary. Brain Research Bulletin, 1991, 26, 195-201.	1.4	7
344	Opioid peptide mRNA expression in the colon of the rat. Neuroscience Letters, 1999, 272, 111-114.	1.0	7
345	Syrian hamster proopiomelanocortin cDNA cloning and early seasonal changes in testicular expression. General and Comparative Endocrinology, 2003, 133, 353-357.	0.8	7
346	Coding SNPs included in exon arrays for the study of psychiatric disorders. Molecular Psychiatry, 2008, 13, 363-365.	4.1	7
347	Stress amplifies sex differences in primate prefrontal profiles of gene expression. Biology of Sex Differences, 2017, 8, 36.	1.8	7
348	Electrophysiological evaluation of extracellular spermine and alkaline pH on synaptic human GABAA receptors. Translational Psychiatry, 2019, 9, 218.	2.4	7
349	SUPERCOMPUTING WITH TOYS: HARNESSING THE POWER OF NVIDIA 8800GTX AND PLAYSTATION 3 FOR BIOINFORMATICS PROBLEMS. , 2007, , .		7
350	The prohormone and proprotein processing enzymes PC1 and PC2: structure, selective cleavage of mouse POMC and human renin at pairs of basic residues, cellular expression, tissue distribution, and mRNA regulation. NIDA Research Monograph, 1992, 126, 132-50.	0.1	7
351	Pattern of c-fos mRNA induction in rat brain by acute morphine. Canadian Journal of Physiology and Pharmacology, 1998, 76, 294-303.	0.7	7
352	Gamma-melanotropin response to ovine corticotropin releasing factor in normal humans. Neuropeptides, 1987, 9, 269-282.	0.9	6
353	Altered Ratios of Beta-Endorphin : Beta-Lipotropin Released from Anterior Lobe Corticotropes with Increased Secretory Drive. I. Effects of Diminished Glucocorticoid Secretion. Journal of Neuroendocrinology, 1993, 5, 115-120.	1.2	6
354	Frequency of neuropathology in a brain bank from a long-term, domiciliary population. Journal of Psychiatric Research, 1996, 30, 45-49.	1.5	6
355	Evaluation of Sensitivity, Performance and Reproducibility of Microarray Technology in Neuronal Tissue. Integrative and Comparative Biology, 2003, 43, 780-785.	0.9	6
356	Regulation of hippocampal α1d adrenergic receptor mRNA by corticosterone in adrenalectomized rats. Brain Research, 2008, 1218, 132-140.	1.1	6
357	Neural cell adhesion molecule peptide mimetics modulate emotionality: pharmacokinetic and behavioral studies in rats and non-human primates. Neuropsychopharmacology, 2019, 44, 356-363.	2.8	6
358	Changes in Proopiomelanocortin Primary Transcript Levels in the Anterior Pituitary Accompany Increased Adrenocorticotropin Secretion During the Diurnal Surge. Journal of Neuroendocrinology, 1992, 4, 21-28.	1.2	5
359	Crucial Role of c-Jun NH2-Terminal Kinase 1 (JNK1) in Cold-Restraint Stress-Induced Gastric Lesions in Mice. Digestive Diseases and Sciences, 2007, 52, 1698-1705.	1.1	5
360	Fibroblast Growth Factor 2 Sits at the Interface of Stress and Anxiety. Biological Psychiatry, 2016, 80, 419-421.	0.7	5

#	Article	IF	CITATIONS
361	Histofluorescence in the unperfused CNS by cryostat and glyoxylic acid: a preliminary report. Psychopharmacology Communications, 1975, 1, 523-31.	0.3	5
362	The effects of nigrostriatal 6-hydroxydopamine lesions on dopamine D2 receptor mRNA and opioid systems. Progress in Clinical and Biological Research, 1990, 328, 227-30.	0.2	5
363	Editorial. Journal of Psychiatric Research, 1997, 31, 157-158.	1.5	4
364	Nucleus accumbens cocaine-amphetamine regulated transcript mediates food intake during novelty conflict. Physiology and Behavior, 2016, 158, 76-84.	1.0	4
365	Prospects for the evaluation of endorphins as psychotropic agents. Psychopharmacology Bulletin, 1979, 15, 33-5.	0.0	4
366	Interaction between cholecystokinin and the fibroblast growth factor system in the ventral tegmental area of selectively bred high- and low-responder rats. Neuroscience, 2013, 255, 68-75.	1.1	3
367	Neuromodulatory functions of the brain pro-opiocortin system. Advances in Biochemical Psychopharmacology, 1980, 22, 435-45.	0.1	3
368	Opioid agonists and antagonists in schizophrenia. Advances in Biochemical Psychopharmacology, 1980, 22, 447-53.	0.1	3
369	Neurochemistry and Neuropharmacology. Schizophrenia Bulletin, 1988, 14, 399-412.	2.3	2
370	APPARENT EVIDENCE OF RECEPTOR SUBTYPES: RECEPTOR BINDING STUDIES WITH THE CLONED RAT AND HUMAN KAPPA RECEPTORS. Analgesia (Elmsford, N Y), 1995, 1, 553-556.	0.5	2
371	In Situ and Immunohistochemical Analysis of Endogenous Opioid Receptor mRNA and Protein Expression in the Developing Human Brain. • 1745. Pediatric Research, 1997, 41, 293-293.	1.1	2
372	Recent studies on dynorphin and enkephalin precursor fragments in central nervous system. Advances in Biochemical Psychopharmacology, 1982, 33, 35-42.	0.1	2
373	Characterization of multiple forms of beta-E in pituitary and brain: effect of stress. Advances in Biochemical Psychopharmacology, 1982, 33, 61-7.	0.1	2
374	Analyzing Gene Expression in Depression. American Journal of Psychiatry, 2009, 166, 961-963.	4.0	1
375	In Memory of Elizabeth Young. Biological Psychiatry, 2009, 66, e25-e26.	0.7	1
376	Candesartan reverses depressionâ€like behavior in a rodent model of depression. FASEB Journal, 2010, 24, 1052.3.	0.2	1
377	A diagram editor for efficient biomedical knowledge capture and integration. Summit on Translational Bioinformatics, 2008, 2008, 130-4.	0.7	1
378	Effect of hypophysectomy on dynorphin mRNA and peptide content in the rat adrenal gland. Progress in Clinical and Biological Research, 1990, 328, 207-10.	0.2	1

#	Article	IF	CITATIONS
379	Identification of prodynorphin and proenkephalin mRNA expressing cells in the neurointermediate lobe of the rat pituitary gland. Progress in Clinical and Biological Research, 1990, 328, 231-4.	0.2	1
380	Opioid peptides and related substances: immunocytochemistry. Advances in Biochemical Psychopharmacology, 1981, 28, 77-86.	0.1	1
381	Hybridization Studies of Adrenocorticosteroid Receptors in the Central Nervous System. Methods in Neurosciences, 1994, 22, 189-210.	0.5	Ο
382	EXPLORING IMPORTANT ISSUES IN THE IMPLEMENTATION OF GENE SET ENRICHMENT ANALYSIS. , 2005, , .		0
383	Cross-Domain Neurobiology Data Integration and Exploration. , 2009, , .		Ο
384	23. A Genetic and Developmental Model of Temperament in the Rat: Role of Neuroplasticity and Relevance to Human Mood Disorders. Biological Psychiatry, 2017, 81, S10.	0.7	0
385	GENE DEFINITION IN DIFFERENT DATABASES AND ITS IMPLICATION IN MICROARRAY DATA INTERPRETATION. , 2005, , .		Ο
386	Upregulation in the Expression of Tryptophan Hydroxylase 2 (TPH2) in the Lower Brainstem in Depression. FASEB Journal, 2010, 24, lb613.	0.2	0
387	In situ hybridization versus northern analysis: working towards the correlation of two quantitative techniques for opioid and vasopressin mRNAs in the rat hypothalamus and pituitary. NIDA Research Monograph, 1986, 75, 287-90.	0.1	0
388	Gamma-3-MSH and beta-endorphin in monkey pituitary. NIDA Research Monograph, 1986, 75, 307-10.	0.1	0