
Eleonora Carlesso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9563907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Internal Medicine, 2020, 180, 1345.	5.1	1,165
2	Lung Stress and Strain during Mechanical Ventilation for Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 346-355.	5.6	633
3	Ventilator-related causes of lung injury: the mechanical power. Intensive Care Medicine, 2016, 42, 1567-1575.	8.2	586
4	The rule regulating pH changes during crystalloid infusion. Intensive Care Medicine, 2011, 37, 461-468.	8.2	576
5	Prone Position in Acute Respiratory Distress Syndrome. Rationale, Indications, and Limits. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1286-1293.	5.6	349
6	Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 578-586.	5.6	287
7	Lung Inhomogeneity in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 149-158.	5.6	277
8	Decrease in Paco2 with prone position is predictive of improved outcome in acute respiratory distress syndrome*. Critical Care Medicine, 2003, 31, 2727-2733.	0.9	247
9	Ventilator-induced lung injury: The anatomical and physiological framework. Critical Care Medicine, 2010, 38, S539-S548.	0.9	201
10	An Increase of Abdominal Pressure Increases Pulmonary Edema in Oleic Acid–induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 534-541.	5.6	185
11	Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Critical Care, 2004, 8, 350.	5.8	181
12	Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Medicine, 2017, 43, 1453-1463.	8.2	180
13	Clinical review: Extracorporeal membrane oxygenation. Critical Care, 2011, 15, 243.	5.8	160
14	Prone position delays the progression of ventilator-induced lung injury in rats: Does lung strain distribution play a role?*. Critical Care Medicine, 2005, 33, 361-367.	0.9	159
15	Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients. Critical Care, 2021, 25, 128.	5.8	157
16	Bedside Selection of Positive End-Expiratory Pressure in Mild, Moderate, and Severe Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2014, 42, 252-264.	0.9	138
17	Airway driving pressure and lung stress in ARDS patients. Critical Care, 2016, 20, 276.	5.8	129
18	Noninvasive positive pressure ventilation delivered by helmet vs. standard face mask. Intensive Care Medicine, 2003, 29, 1671-1679.	8.2	118

ELEONORA CARLESSO

#	Article	IF	CITATIONS
19	Stress and strain within the lung. Current Opinion in Critical Care, 2012, 18, 42-47.	3.2	111
20	Lung Recruitment Assessed by Respiratory Mechanics and Computed Tomography in Patients with Acute Respiratory Distress Syndrome. What Is the Relationship?. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1254-1263.	5.6	111
21	Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome*. Critical Care Medicine, 2008, 36, 669-675.	0.9	102
22	Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Medicine, 2017, 43, 603-611.	8.2	96
23	The Role of CT-scan Studies for the Diagnosis and Therapy of Acute Respiratory Distress Syndrome. Clinics in Chest Medicine, 2006, 27, 559-570.	2.1	90
24	Impact of flow and temperature on patient comfort during respiratory support by high-flow nasal cannula. Critical Care, 2018, 22, 120.	5.8	88
25	Lung Inhomogeneities and Time Course of Ventilator-induced Mechanical Injuries. Anesthesiology, 2015, 123, 618-627.	2.5	86
26	Positive end-expiratory pressure. Current Opinion in Critical Care, 2010, 16, 39-44.	3.2	84
27	Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Medicine Experimental, 2015, 3, 34.	1.9	84
28	Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure: impact and clinical fallout through the following 20Ayears. Intensive Care Medicine, 2013, 39, 1909-1915.	8.2	80
29	Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Critical Care Medicine, 2003, 31, S300-S304.	0.9	74
30	Relationship between gas exchange response to prone position and lung recruitability during acute respiratory failure. Intensive Care Medicine, 2009, 35, 1011-1017.	8.2	61
31	Limits of normality of quantitative thoracic CT analysis. Critical Care, 2013, 17, R93.	5.8	61
32	Effects of thoraco-pelvic supports during prone position in patients with acute lung injury/acute respiratory distress syndrome: a physiological study. Critical Care, 2006, 10, R87.	5.8	60
33	Lung Recruitability Is Better Estimated According to the Berlin Definition of Acute Respiratory Distress Syndrome at Standard 5 cm H2O Rather Than Higher Positive End-Expiratory Pressure. Critical Care Medicine, 2015, 43, 781-790.	0.9	59
34	Compressive Forces and Computed Tomography–derived Positive End-expiratory Pressure in Acute Respiratory Distress Syndrome. Anesthesiology, 2014, 121, 572-581.	2.5	58
35	Selecting the â€~right' positive end-expiratory pressure level. Current Opinion in Critical Care, 2015, 21, 50-57.	3.2	55
36	How to ventilate patients with acute lung injury and acute respiratory distress syndrome. Current Opinion in Critical Care, 2005, 11, 69-76.	3.2	54

ELEONORA CARLESSO

#	Article	IF	CITATIONS
37	Time to generate ventilator-induced lung injury among mammals with healthy lungs: a unifying hypothesis. Intensive Care Medicine, 2011, 37, 1913-1920.	8.2	54
38	Time to reach a new steady state after changes of positive end expiratory pressure. Intensive Care Medicine, 2013, 39, 1377-1385.	8.2	53
39	Towards ultraprotective mechanical ventilation. Current Opinion in Anaesthesiology, 2012, 25, 141-147.	2.0	49
40	Lung inhomogeneities, inflation and [¹⁸ F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome. European Respiratory Journal, 2016, 47, 233-242.	6.7	48
41	Radiological Imaging in Acute Lung Injury and Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 404-415.	2.1	47
42	Intra-abdominal pressure may be decreased non-invasively by continuous negative extra-abdominal pressure (NEXAP). Intensive Care Medicine, 2003, 29, 2063-2067.	8.2	46
43	Estimation of end-expiratory lung volume variations by optoelectronic plethysmography. Critical Care Medicine, 2001, 29, 1807-1811.	0.9	45
44	In vivo conditioning of acid–base equilibrium by crystalloid solutions: an experimental study on pigs. Intensive Care Medicine, 2012, 38, 686-693.	8.2	41
45	Strong ion difference in urine: new perspectives in acid-base assessment. Critical Care, 2006, 10, 137.	5.8	39
46	Chest wall mechanics during pressure support ventilation. Critical Care, 2006, 10, R54.	5.8	38
47	Effect of body mass index in acute respiratory distress syndrome. British Journal of Anaesthesia, 2016, 116, 113-121.	3.4	34
48	Electrolyte shifts across the artificial lung in patients on extracorporeal membrane oxygenation: Interdependence between partial pressure of carbon dioxide and strong ion difference. Journal of Critical Care, 2015, 30, 2-6.	2.2	33
49	Increasing support by nasal high flow acutely modifies the ROX index in hypoxemic patients: A physiologic study. Journal of Critical Care, 2019, 53, 183-185.	2.2	29
50	A mathematical model of oxygenation during venovenous extracorporeal membrane oxygenation support. Journal of Critical Care, 2016, 36, 178-186.	2.2	28
51	Acute respiratory distress syndrome, the critical care paradigm: what we learned and what we forgot. Current Opinion in Critical Care, 2004, 10, 272-278.	3.2	27
52	Dilutional acidosis: where do the protons come from?. Intensive Care Medicine, 2009, 35, 2033-2043.	8.2	27
53	Supporting hemodynamics: what should we target? What treatments should we use?. Critical Care, 2013, 17, S4.	5.8	23
54	Assessing gas exchange in acute lung injury/acute respiratory distress syndrome: diagnostic techniques and prognostic relevance. Current Opinion in Critical Care, 2011, 17, 18-23.	3.2	17

ELEONORA CARLESSO

#	Article	IF	CITATIONS
55	Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 Italian intensive care units. Intensive Care Medicine, 2021, 47, 995-1008.	8.2	16
56	Low noncarbonic buffer power amplifies acute respiratory acid-base disorders in patients with sepsis: an in vitro study. Journal of Applied Physiology, 2021, 131, 464-473.	2.5	15
57	Nasal High Flow Delivered within the Helmet: A New Noninvasive Respiratory Support. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 115-117.	5.6	14
58	Key Role of Respiratory Quotient to Reduce the Occurrence of Hypoxemia During Extracorporeal Gas Exchange: A Theoretical Analysis*. Critical Care Medicine, 2020, 48, e1327-e1331.	0.9	10
59	Time-Course of Physiologic Variables During Extracorporeal Membrane Oxygenation and Outcome of Severe Acute Respiratory Distress Syndrome. ASAIO Journal, 2020, 66, 663-670.	1.6	9
60	Pulmonary volume-feedback and ventilatory pattern after bilateral lung transplantation using neurally adjusted ventilatory assist ventilation. British Journal of Anaesthesia, 2021, 127, 143-152.	3.4	7
61	Physiology versus evidence-based guidance for critical care practice. Critical Care, 2015, 19, S7.	5.8	5
62	Quantification of Recirculation During Veno-Venous Extracorporeal Membrane Oxygenation. ASAIO Journal, 2021, Publish Ahead of Print, .	1.6	4
63	CT Ventilation Imaging. Lung Biology in Health and Disease, 2005, , 33-61.	0.1	4
64	Extracorporeal Membrane Oxygenation for Pulmonary Support. , 2019, , 1183-1190.e2.		3
65	Alkaline Liquid Ventilation of the Membrane Lung for Extracorporeal Carbon Dioxide Removal (ECCO2R): In Vitro Study. Membranes, 2021, 11, 464.	3.0	2
66	Sharing Mechanical Ventilator: In Vitro Evaluation of Circuit Cross-Flows and Patient Interactions. Membranes, 2021, 11, 547.	3.0	2
67	The Hamburger Effect: Beyond Chloride Shift. , 2012, , .		1
68	Reply: Different Definitions of Lung Recruitment by Computed Tomography Scan. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1315-1316.	5.6	1
69	Acute Respiratory Failure. , 2010, , 231-240.		1
70	Mechanical Ventilation in Acute Respiratory Distress Syndrome. , 2008, , 191-203.		0
71	Reply to Agrafiotis. Intensive Care Medicine, 2010, 36, 901-902.	8.2	0
72	Stress Index: Is The Airway Pressure A Good Surrogate Of The Transpulmonary Pressure?. , 2010, , .		0

Stress Index: Is The Airway Pressure A Good Surrogate Of The Transpulmonary Pressure?. , 2010, , . 72

#	Article	IF	CITATIONS
73	Recruitability, recruitment, and tidal volume interactions: Is biologically variable ventilation a possible answer?*. Critical Care Medicine, 2011, 39, 1839-1840.	0.9	0
74	Ventilation During Veno-Venous Extracorporeal Membrane Oxygenation. , 2021, , 741-750.		0
75	The Evolution of Imaging in Respiratory Dysfunction Failure. , 2009, , 195-206.		0
76	Chapter 62 Acute respiratory failure and acute respiratory distress syndrome. , 2011, , .		0
77	Extracorporeal membrane oxygenation. , 2015, , 131-138.		0
78	Acute respiratory failure and acute respiratory distress syndrome. , 2015, , .		0
79	Is airway driving pressure a good predictor of lung stress during mechanical ventilation for ARDS?. , 2016, , .		0