Marek A Cebrat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9563102/publications.pdf

Version: 2024-02-01

45 papers

841 citations

567281 15 h-index 28 g-index

47 all docs

47 docs citations

47 times ranked

1063 citing authors

#	Article	IF	CITATIONS
1	Structure of the GCN5 histone acetyltransferase bound to a bisubstrate inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14065-14070.	7.1	104
2	Histone Acetyltransferase Activity of p300 Is Required for Transcriptional Repression by the Promyelocytic Leukemia Zinc Finger Protein. Molecular and Cellular Biology, 2005, 25, 5552-5566.	2.3	99
3	Synthesis and analysis of potential prodrugs of coenzyme A analogues for the inhibition of the histone acetyltransferase p300. Bioorganic and Medicinal Chemistry, 2003, 11, 3307-3313.	3.0	64
4	Synthesis and Evaluation of a Potent and Selective Cell-Permeable p300 Histone Acetyltransferase Inhibitor. Journal of the American Chemical Society, 2005, 127, 17182-17183.	13.7	63
5	Inhibition of Epstein-Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4625-4630.	7.1	59
6	p300/CBP-associated Factor Drives DEK into Interchromatin Granule Clusters. Journal of Biological Chemistry, 2005, 280, 31760-31767.	3.4	53
7	Cyclolinopeptide A (CLA) mediates its immunosuppressive activity through cyclophilin-dependent calcineurin inactivation. FEBS Letters, 1997, 418, 224-227.	2.8	50
8	Selective HAT Inhibitors as Mechanistic Tools for Protein Acetylation. Methods in Enzymology, 2003, 376, 188-199.	1.0	37
9	The role of the histidine residue in the coordination abilities of peptides with a multi-histidine sequence towards copper(II) ions. Polyhedron, 2008, 27, 1539-1555.	2.2	35
10	Cyclopeptides of Linum usitatissimum. Journal of Peptide Science, 2006, 12, 569-574.	1.4	34
11	The immunosuppressive activity and solution structures of ubiquitin fragments. Biopolymers, 2009, 91, 423-431.	2.4	25
12	Immunosuppressive activity of hymenistatin I. Peptides, 1996, 17, 191-196.	2.4	23
13	The Problem of Amino Acid Complementarity and Antisense Peptides. Current Protein and Peptide Science, 2004, 5, 507-527.	1.4	22
14	Peptides derivatized with bicyclic quaternary ammonium ionization tags. Sequencing via tandem mass spectrometry. Journal of Mass Spectrometry, 2014, 49, 995-1001.	1.6	21
15	Hydrogen–deuterium exchange in imidazole as a tool for studying histidine phosphorylation. Analytical and Bioanalytical Chemistry, 2014, 406, 8013-8020.	3.7	16
16	The peptide molecular links between the central nervous and the immune systems. Amino Acids, 2005, 29, 161-176.	2.7	12
17	Does the edgeâ€toâ€face interaction between aromatic rings occur in cyclolinopeptide A analogues?. International Journal of Peptide and Protein Research, 1994, 44, 61-69.	0.1	11
18	The structural effects of the Cys-S-S-Cys bridge exchange by the His-Cu(II)-His motif studied on natural peptides — a promising tool for natural compounds-based design. Dalton Transactions, 2009, , 4853.	3.3	11

#	Article	IF	Citations
19	Synthesis, biological activity and resistance to proteolytic digestion ofÂnew cyclic dermorphin/deltorphin analogues. European Journal of Medicinal Chemistry, 2013, 63, 457-467.	5.5	9
20	The Coordination Abilities of New Cyclic Analogs of Somatostatin. International Journal of Peptide Research and Therapeutics, 2017, 23, 135-143.	1.9	9
21	Sulfonated analogues of cyclolinopeptide A Synthesis, immunosuppressive activity and CD studies. Chemical Biology and Drug Design, 1997, 49, 415-420.	1.1	8
22	The unusual coordination abilities of the peptides with \hat{l}^2 XaaHisGlyHis sequence. The influence of structural modification of the peptide chain on the copper(ii) binding. Dalton Transactions, 2010, 39, 6518.	3.3	7
23	Synthesis and evaluation of dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium carboxylates as fixed charge fluorescent derivatization reagents for MEKC and MS proteomic analyses. Journal of Molecular Structure, 2020, 1217, 128426.	3.6	7
24	The role of hydroxyl group of tyrosine in copper(II) binding by His-analogs of oxytocin. Inorganica Chimica Acta, 2013, 396, 40-48.	2.4	6
25	On the peptide-antipeptide interactions in interleukin-1 receptor system Acta Biochimica Polonica, 2004, 51, 57-66.	0.5	6
26	Novel short-chain analogues of somatostatin as ligands for Cu(II) ions. Role of the metal ion binding on the spatial structure of the ligand. Journal of Inorganic Biochemistry, 2012, 117, 10-17.	3.5	5
27	Structural aspects of copper(II) binding by a multi-His analogue of somatostatin. Inorganica Chimica Acta, 2014, 416, 57-62.	2.4	5
28	Application of Safirinium N-Hydroxysuccinimide Esters to Derivatization of Peptides for High-Resolution Mass Spectrometry, Tandem Mass Spectrometry, and Fluorescent Labeling of Bacterial Cells. International Journal of Molecular Sciences, 2020, 21, 9643.	4.1	5
29	Argireline: Needleâ€Free Botox as Analytical Challenge. Chemistry and Biodiversity, 2021, 18, e2000992.	2.1	5
30	The unusual binding abilities of the His-analogue of Arg-vasopressin towards Cu2+. Dalton Transactions, 2008, , 4978.	3.3	4
31	The interaction of the ubiquitin 50–59 fragment with copper(II) ions. Journal of Inorganic Biochemistry, 2012, 110, 40-45.	3.5	4
32	Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. Chemosensors, 2022, 10, 31.	3.6	4
33	Histidine analogues of oxytocin and vasopressin as efficient ligands for Zn2+ ions – Potentiometric and NMR studies. Journal of Inorganic Biochemistry, 2009, 103, 1033-1038.	3.5	3
34	Interactions between Ni2+ ions and tetrapeptides containing (Asp/Lys)HisGly(I/d)His sequence. Polyhedron, 2010, 29, 3052-3058.	2.2	3
35	The structural aspects of the copper(II) binding by the His-analogue of somatostatin. Polyhedron, 2012, 42, 236-242.	2.2	3
36	The Analysis of the Structural Aspects of Cu(II) Binding by Cyclic His/Asp-Analogues of Somatostatin. International Journal of Peptide Research and Therapeutics, 2020, 26, 969-977.	1.9	3

3

#	Article	IF	Citations
37	RGD Peptides. , 2013, , 705-713.		2
38	Immunosuppressive activity of cyclolinopeptide A analogs. , 1992, , 871-872.		2
39	RGD-Peptides and Some Immunological Problems. , 2006, , 573-578.		1
40	THz-TDS spectroscopy of selected organic crystalline forms. , 2012, , .		1
41	The role of the \hat{I}^2 Asp residue in copper(II) binding by modified peptides. Tetrahedron Letters, 2012, 53, 1652-1655.	1.4	0
42	The binding of Cu(II) by the peptide with \hat{l}^2 -Asp located in non-coordinating site $\hat{a} \in \text{``Solution and structural studies. Inorganica Chimica Acta, 2014, 421, 67-73.}$	2.4	0
43	Chemical and biological properties of anti-wrinkle peptide Argireline. Aesthetic Cosmetology and Medicine, 2021, 10, 125-133.	0.1	0
44	Histone Acetyltransferase Activity of p300 Is Required for Transcriptional Repression by the Promyelocytic Leukemia Zinc Finger Protein Blood, 2004, 104, 359-359.	1.4	0
45	The immunosuppressive activity of the analogues of cyclolinopeptide (CLA), antamanide (ANT) and cycloamanides (CyAs)., 1993,, 825-826.		O