Thomas J Hawke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9562678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myogenic satellite cells: physiology to molecular biology. Journal of Applied Physiology, 2001, 91, 534-551.	2.5	1,359
2	Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 2004, 265, 262-275.	2.0	636
3	Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function. Cell Metabolism, 2016, 24, 118-129.	16.2	259
4	Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiological Genomics, 2003, 14, 261-271.	2.3	232
5	Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. American Journal of Physiology - Cell Physiology, 2010, 298, C961-C971.	4.6	226
6	AMPK Activation of Muscle Autophagy Prevents Fasting-Induced Hypoglycemia and Myopathy during Aging. Cell Metabolism, 2015, 21, 883-890.	16.2	190
7	Adipogenic and lipolytic effects of chronic glucocorticoid exposure. American Journal of Physiology - Cell Physiology, 2011, 300, C198-C209.	4.6	186
8	Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function. American Journal of Physiology - Cell Physiology, 2008, 295, C203-C212.	4.6	143
9	Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Frontiers in Physiology, 2013, 4, 379.	2.8	140
10	Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatric Diabetes, 2011, 12, 345-364.	2.9	129
11	AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia, 2014, 57, 1693-1702.	6.3	105
12	Muscle-Specific Adaptations, Impaired Oxidative Capacity and Maintenance of Contractile Function Characterize Diet-Induced Obese Mouse Skeletal Muscle. PLoS ONE, 2009, 4, e7293.	2.5	101
13	Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells. Stem Cells, 2004, 22, 1305-1320.	3.2	98
14	Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H ₂ O ₂ emission during impaired oxidative phosphorylation. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 643-661.	7.3	86
15	Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia, 2018, 61, 1411-1423.	6.3	72
16	The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals. Journal of Experimental Biology, 2008, 211, 2559-2565.	1.7	70
17	Adiponectin—Consideration for its Role in Skeletal Muscle Health. International Journal of Molecular Sciences, 2019, 20, 1528.	4.1	70
18	Absence of p21CIP Rescues Myogenic Progenitor Cell Proliferative and Regenerative Capacity in Foxk1 Null Mice. Journal of Biological Chemistry, 2003, 278, 4015-4020.	3.4	68

Тномая J Hawke

#	Article	IF	CITATIONS
19	Diet-induced obesity impairs muscle satellite cell activation and muscle repair through alterations in hepatocyte growth factor signaling. Physiological Reports, 2015, 3, e12506.	1.7	65
20	Homer modulates NFAT-dependent signaling during muscle differentiation. Developmental Biology, 2005, 287, 213-224.	2.0	63
21	The NLRP3 inflammasome contributes to sarcopenia and lower muscle glycolytic potential in old mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E222-E232.	3.5	62
22	Diabetic myopathy differs between <i>Ins2</i> ^{<i>Akita+/â^'</i>} and streptozotocin-induced Type 1 diabetic models. Journal of Applied Physiology, 2009, 106, 1650-1659.	2.5	61
23	Muscle Stem Cells and Exercise Training. Exercise and Sport Sciences Reviews, 2005, 33, 63-68.	3.0	58
24	Inhibition of Plasminogen Activator Inhibitor-1 Restores Skeletal Muscle Regeneration in Untreated Type 1 Diabetic Mice. Diabetes, 2011, 60, 1964-1972.	0.6	56
25	Impaired Macrophage and Satellite Cell Infiltration Occurs in a Muscle-Specific Fashion Following Injury in Diabetic Skeletal Muscle. PLoS ONE, 2013, 8, e70971.	2.5	50
26	Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World Journal of Diabetes, 2015, 6, 1323.	3.5	50
27	Fitness and physical activity in youth with type 1 diabetes mellitus in good or poor glycemic control. Pediatric Diabetes, 2015, 16, 48-57.	2.9	44
28	Diabetic Myopathy: current molecular understanding of this novel neuromuscular disorder. Current Opinion in Neurology, 2017, 30, 545-552.	3.6	43
29	Considering Type 1 Diabetes as a Form of Accelerated Muscle Aging. Exercise and Sport Sciences Reviews, 2019, 47, 98-107.	3.0	42
30	Breaking sarcomeres by in vitro exercise. Scientific Reports, 2016, 6, 19614.	3.3	40
31	Xin, an actin binding protein, is expressed within muscle satellite cells and newly regenerated skeletal muscle fibers. American Journal of Physiology - Cell Physiology, 2007, 293, C1636-C1644.	4.6	38
32	Endurance exercise training increases adipose tissue glucocorticoid exposure: adaptations that facilitate lipolysis. Metabolism: Clinical and Experimental, 2009, 58, 651-660.	3.4	38
33	Silencing of <i>Mustn1</i> inhibits myogenic fusion and differentiation. American Journal of Physiology - Cell Physiology, 2010, 298, C1100-C1108.	4.6	38
34	Loss of the adipokine lipocalin-2 impairs satellite cell activation and skeletal muscle regeneration. American Journal of Physiology - Cell Physiology, 2018, 315, C714-C721.	4.6	37
35	Streptozotocin induces G2 arrest in skeletal muscle myoblasts and impairs muscle growth in vivo. American Journal of Physiology - Cell Physiology, 2007, 292, C1033-C1040.	4.6	36
36	Intestinal SR-BI is upregulated in insulin-resistant states and is associated with overproduction of intestinal apoB48-containing lipoproteins. American Journal of Physiology - Renal Physiology, 2011, 301, G326-G337.	3.4	36

THOMAS J HAWKE

#	Article	IF	CITATIONS
37	Decreased Satellite Cell Number and Function in Humans and Mice With Type 1 Diabetes Is the Result of Altered Notch Signaling. Diabetes, 2016, 65, 3053-3061.	0.6	36
38	K ⁺ Transport and Volume Regulatory Response by NKCC in Resting Rat Hindlimb Skeletal Muscle. Cellular Physiology and Biochemistry, 2002, 12, 279-292.	1.6	35
39	Xin Is a Marker of Skeletal Muscle Damage Severity in Myopathies. American Journal of Pathology, 2013, 183, 1703-1709.	3.8	35
40	Rad is temporally regulated within myogenic progenitor cells during skeletal muscle regeneration. American Journal of Physiology - Cell Physiology, 2006, 290, C379-C387.	4.6	34
41	Enhanced Lipid Oxidation and Maintenance of Muscle Insulin Sensitivity Despite Glucose Intolerance in a Diet-Induced Obesity Mouse Model. PLoS ONE, 2013, 8, e71747.	2.5	32
42	Allergen-induced Changes in Bone Marrow and Airway Dendritic Cells in Subjects with Asthma. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 169-177.	5.6	32
43	Activation of autophagy by globular adiponectin is required for muscle differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 694-702.	4.1	28
44	Aerobic training as an adjunctive therapy to enzyme replacement in Pompe disease. Molecular Genetics and Metabolism, 2012, 107, 469-479.	1.1	27
45	A novel <scp>GFP</scp> reporter mouse reveals <i><scp>M</scp>ustn1</i> expression in adult regenerating skeletal muscle, activated satellite cells and differentiating myoblasts. Acta Physiologica, 2013, 208, 180-190.	3.8	25
46	Muscleâ€specific AMPK β1β2â€null mice display a myopathy due to loss of capillary density in nonpostural muscles. FASEB Journal, 2014, 28, 2098-2107.	0.5	25
47	Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice. Journal of Physiology, 2019, 597, 1361-1381.	2.9	25
48	Volume regulation in mammalian skeletal muscle: the role of sodium–potassium–chloride cotransporters during exposure to hypertonic solutions. Journal of Physiology, 2011, 589, 2887-2899.	2.9	24
49	An integrative, in situ approach to examining K+ flux in resting skeletal muscle. Canadian Journal of Physiology and Pharmacology, 2001, 79, 996-1006.	1.4	22
50	Myostatin inhibition therapy for insulin-deficient type 1 diabetes. Scientific Reports, 2016, 6, 32495.	3.3	21
51	Impaired Growth and Force Production in Skeletal Muscles of Young Partially Pancreatectomized Rats: A Model of Adolescent Type 1 Diabetic Myopathy?. PLoS ONE, 2010, 5, e14032.	2.5	21
52	Age-related differences in skeletal muscle lipid profiles of Weddell seals: clues to developmental changes. Journal of Experimental Biology, 2010, 213, 1676-1684.	1.7	20
53	Skeletal muscle regeneration is delayed by reduction in Xin expression: consequence of impaired satellite cell activation?. American Journal of Physiology - Cell Physiology, 2012, 302, C220-C227.	4.6	19
54	Early oxidative shifts in mouse skeletal muscle morphology with high-fat diet consumption do not lead to functional improvements. Physiological Reports, 2014, 2, e12149.	1.7	19

Thomas J Hawke

#	Article	IF	CITATIONS
55	Inhibition of PAI-1 Via PAI-039 Improves Dermal Wound Closure in Diabetes. Diabetes, 2015, 64, 2593-2602.	0.6	18
56	The caveolin-1 regulated protein follistatin protects against diabetic kidney disease. Kidney International, 2019, 96, 1134-1149.	5.2	17
57	Impaired Function and Altered Morphology in the Skeletal Muscles of Adult Men and Women With Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2405-2422.	3.6	16
58	Potential biomarkers of skeletal muscle damage. Biomarkers in Medicine, 2014, 8, 375-378.	1.4	14
59	K+ transport in resting rat hind-limb skeletal muscle in response to paraxanthine, a caffeine metabolite. Canadian Journal of Physiology and Pharmacology, 1999, 77, 835-843.	1.4	13
60	Sexual dimorphism in human skeletal muscle mitochondrial bioenergetics in response to type 1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E44-E51.	3.5	13
61	Muscle and serum myostatin expression in type 1 diabetes. Physiological Reports, 2020, 8, e14500.	1.7	12
62	An integrative, in situ approach to examining K ⁺ flux in resting skeletal muscle. Canadian Journal of Physiology and Pharmacology, 2001, 79, 996-1006.	1.4	10
63	Increased intra-mitochondrial lipofuscin aggregates with spherical dense body formation in mitochondrial myopathy. Journal of the Neurological Sciences, 2020, 413, 116816.	0.6	9
64	The impact of statins on physical activity and exercise capacity: an overview of the evidence, mechanisms, and recommendations. European Journal of Applied Physiology, 2020, 120, 1205-1225.	2.5	8
65	Increased flow rate and papaverine increase K+ exchange in perfused rat hind-limb skeletal muscle. Canadian Journal of Physiology and Pharmacology, 1999, 77, 536-543.	1.4	7
66	Inward Flux of Lactate- through Monocarboxylate Transporters Contributes to Regulatory Volume Increase in Mouse Muscle Fibres. PLoS ONE, 2013, 8, e84451.	2.5	7
67	Alterations in mitochondrial functions and morphology in muscle and nonâ€muscle tissues in type 1 diabetes: implications for metabolic health. Experimental Physiology, 2020, 105, 565-570.	2.0	7
68	Normal to enhanced intrinsic mitochondrial respiration in skeletal muscle of middle- to older-aged women and men with uncomplicated type 1 diabetes. Diabetologia, 2021, 64, 2517-2533.	6.3	7
69	Alterations in Skeletal Muscle Repair in Young Adults with Type 1 Diabetes Mellitus. American Journal of Physiology - Cell Physiology, 2021, 321, C876-C883.	4.6	7
70	Ouabain stimulates unidirectional and net potassium efflux in resting mammalian skeletal muscle. Canadian Journal of Physiology and Pharmacology, 2001, 79, 932-941.	1.4	6
71	Statin Therapy Negatively Impacts Skeletal Muscle Regeneration and Cutaneous Wound Repair in Type 1 Diabetic Mice. Frontiers in Physiology, 2017, 8, 1088.	2.8	6
72	Statin administration activates system xC ^{â^'} in skeletal muscle: a potential mechanism explaining statin-induced muscle pain. American Journal of Physiology - Cell Physiology, 2019, 317, C894-C899.	4.6	6

Тномая J Hawke

#	Article	IF	CITATIONS
73	Diabetic Bone Disease and Diabetic Myopathy: Manifestations of the Impaired Muscle-Bone Unit in Type 1 Diabetes. Journal of Diabetes Research, 2022, 2022, 1-8.	2.3	5
74	Statin Therapy Alters Lipid Storage in Diabetic Skeletal Muscle. Frontiers in Endocrinology, 2016, 7, 95.	3.5	4
75	<i>AJP-Cell Physiology</i> begins landmark reviews in cell physiology: an editorial from the senior editors of <i>AJP-Cell Physiology</i> . American Journal of Physiology - Cell Physiology, 2018, 314, C1-C2.	4.6	3
76	Stem Cells and Muscle Regeneration. , 2006, , 682-687.		3
77	Expanding Roles for Muscle Satellite Cells in Exercise-Induced Hypertrophy. Function, 2020, 2, zqaa040.	2.3	3
78	Voluntary physical activity and leucine correct impairments in muscle protein synthesis in partially pancreatectomised rats. Diabetologia, 2011, 54, 3111-3120.	6.3	2
79	<i>>T-cells and muscle just don't talk like they used to</i> : Focus on "Age-related impairment of T cell-induced skeletal muscle precursor cell function― American Journal of Physiology - Cell Physiology, 2011, 300, C1223-C1225.	4.6	2
80	The Pleckstrin homology like domain family member, TDAG51, is temporally regulated during skeletal muscle regeneration. Biochemical and Biophysical Research Communications, 2018, 495, 499-505.	2.1	2
81	Increased flow rate and papaverine increase K ⁺ exchange in perfused rat hind-limb skeletal muscle. Canadian Journal of Physiology and Pharmacology, 1999, 77, 536-543.	1.4	2
82	Skeletal muscle stem cells: a symposium. Applied Physiology, Nutrition and Metabolism, 2006, 31, 771-772.	1.9	1
83	From matrices to mitochondria: emerging roles and regulation of the striated muscle cytoskeleton. American Journal of Physiology - Cell Physiology, 2019, 316, C655-C656.	4.6	1
84	Wasting Away: AJP Cell Initiates Thematic Reviews on Skeletal Muscle Wasting. American Journal of Physiology - Cell Physiology, 2021, 321, C38-C39.	4.6	1
85	Maintenance of contractile properties despite impaired skeletal muscle oxidative metabolism in dietâ€induced obesity FASEB Journal, 2009, 23, 990.3.	0.5	1
86	AJP-Cell Physiology begins a new Theme of Reviews on "Inflammation: From Cellular Mechanisms to Immune Cell Educationâ€: American Journal of Physiology - Cell Physiology, 2020, 318, C831-C831.	4.6	0
87	Functional and Molecular Characterization of Skeletal Muscleâ€Specific CARM1 Knockout Mice. FASEB Journal, 2021, 35, .	0.5	Ο
88	Skeletal Muscle Regeneration Impairment in Type 1 Diabetes Mellitus is Characterized by Dysregulated Sphingosineâ€1â€Phosphate and Ceramideâ€1â€Phosphate Responses. FASEB Journal, 2021, 35, .	0.5	0
89	Xin expression is observed within muscle satellite cells of regenerating skeletal muscle. FASEB Journal, 2007, 21, A1305.	0.5	0
90	Xin is a novel actin binding protein that regulates satellite cell function. FASEB Journal, 2007, 21, A1305.	0.5	0

THOMAS J HAWKE

#	Article	IF	CITATIONS
91	The ontogeny of skeletal muscle adaptations that enable long deep dives in Weddell seals. FASEB Journal, 2008, 22, 1223.3.	0.5	0
92	Characterizing Diabetic Myopathy: Muscle Contractility and Phenotype of Akita and STZ Diabetic Murine Models. FASEB Journal, 2008, 22, 961.4.	0.5	0
93	The effects of Xin shRNA with cardiotoxin injury on skeletal muscle in vivo. FASEB Journal, 2008, 22, 962.22.	0.5	0
94	Glucocorticoids: Lipolytic or Lipogenic?. FASEB Journal, 2008, 22, 1034.6.	0.5	0
95	Partial Pancreatectomized Diabetic Rats Present with Altered Skeletal Muscle Contractility and Phenotype. FASEB Journal, 2009, 23, 600.19.	0.5	0
96	Skeletal muscle regeneration is attenuated with repression of the cytoskeletal protein, Xin. FASEB Journal, 2009, 23, 600.7.	0.5	0
97	Dietâ€induced obesity alters skeletal muscle satellite cell functional capacity FASEB Journal, 2009, 23, 600.10.	0.5	0
98	Skeletal Muscle Regulatory Responses to Increased Extracellular Lactate. FASEB Journal, 2010, 24, 801.27.	0.5	0
99	Regulatory volume increase in single mouse soleus muscle fibres assessed simultaneously using intracellular fluorescence and fibre width. FASEB Journal, 2010, 24, 801.26.	0.5	0
100	Regulatory volume response to increased extracellular lactate via monocarboxylate transporters in mammalian skeletal muscle. FASEB Journal, 2011, 25, 1051.40.	0.5	0
101	Do those with type 1 diabetes need more exercise to maintain skeletal muscle health?. Journal of Physiology, 2022, 600, 1281-1282.	2.9	0
102	Decreased Diastolic Blood Pressure and Average Grip Strength in Adults with Type 1 Diabetes Compared to Controls: An Analysis of Data from the Canadian Longitudinal Study on Aging (CLSA). Canadian Journal of Diabetes, 2022, , .	0.8	0