Alex D Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9562383/publications.pdf Version: 2024-02-01

ALEY D HALL

#	Article	IF	CITATIONS
1	How Well Do We Understand and Evaluate Climate Change Feedback Processes?. Journal of Climate, 2006, 19, 3445-3482.	3.2	849
2	Increasing precipitation volatility in twenty-first-century California. Nature Climate Change, 2018, 8, 427-433.	18.8	565
3	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
4	The Role of Surface Albedo Feedback in Climate. Journal of Climate, 2004, 17, 1550-1568.	3.2	403
5	Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophysical Research Letters, 2006, 33, .	4.0	305
6	September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geoscience, 2009, 2, 341-343.	12.9	286
7	Towards predictive understanding of regional climate change. Nature Climate Change, 2015, 5, 921-930.	18.8	253
8	Progressing emergent constraints on future climate change. Nature Climate Change, 2019, 9, 269-278.	18.8	195
9	What Controls the Strength of Snow-Albedo Feedback?. Journal of Climate, 2007, 20, 3971-3981.	3.2	181
10	On the persistent spread in snow-albedo feedback. Climate Dynamics, 2014, 42, 69-81.	3.8	178
11	Responses and impacts of atmospheric rivers to climate change. Nature Reviews Earth & Environment, 2020, 1, 143-157.	29.7	171
12	California Winter Precipitation Change under Global Warming in the Coupled Model Intercomparison Project Phase 5 Ensemble. Journal of Climate, 2013, 26, 6238-6256.	3.2	144
13	Emergent Constraints for Cloud Feedbacks. Current Climate Change Reports, 2015, 1, 276-287.	8.6	142
14	Increased Interannual Precipitation Extremes over California under Climate Change. Journal of Climate, 2015, 28, 6324-6334.	3.2	141
15	Positive tropical marine lowâ€eloud cover feedback inferred from cloudâ€eontrolling factors. Geophysical Research Letters, 2015, 42, 7767-7775.	4.0	135
16	Projecting regional change. Science, 2014, 346, 1461-1462.	12.6	123
17	An observational radiative constraint on hydrologic cycle intensification. Nature, 2015, 528, 249-253.	27.8	119
18	ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 2018, 11, 5027-5049.	3.6	119

ALEX D HALL

#	Article	IF	CITATIONS
19	Assessing Snow Albedo Feedback in Simulated Climate Change. Journal of Climate, 2006, 19, 2617-2630.	3.2	105
20	The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming. Journal of Climate, 1999, 12, 2327-2346.	3.2	100
21	Current GCMs' Unrealistic Negative Feedback in the Arctic. Journal of Climate, 2009, 22, 4682-4695.	3.2	96
22	Shallowness of tropical low clouds as a predictor of climate models' response to warming. Climate Dynamics, 2016, 47, 433-449.	3.8	92
23	An emergent constraint on future Arctic sea-ice albedo feedback. Nature Climate Change, 2019, 9, 972-978.	18.8	89
24	A Hybrid Dynamical–Statistical Downscaling Technique. Part I: Development and Validation of the Technique. Journal of Climate, 2015, 28, 4597-4617.	3.2	87
25	Observed Climate–Snowpack Relationships in California and their Implications for the Future. Journal of Climate, 2010, 23, 3446-3456.	3.2	82
26	Anthropogenic warming impacts on California snowpack during drought. Geophysical Research Letters, 2017, 44, 2511-2518.	4.0	79
27	Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environmental Research Letters, 2015, 10, 094005.	5.2	75
28	Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nature Communications, 2021, 12, 3944.	12.8	74
29	Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 432-450.	3.0	66
30	Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Science Advances, 2020, 6, eaba1323.	10.3	65
31	Snow and Climate: Feedbacks, Drivers, and Indices of Change. Current Climate Change Reports, 2019, 5, 322-333.	8.6	64
32	Constraining the increased frequency of global precipitation extremes under warming. Nature Climate Change, 2022, 12, 441-448.	18.8	63
33	A Hybrid Dynamical–Statistical Downscaling Technique. Part II: End-of-Century Warming Projections Predict a New Climate State in the Los Angeles Region. Journal of Climate, 2015, 28, 4618-4636.	3.2	57
34	Anthropogenic Warming Impacts on Today's Sierra Nevada Snowpack and Flood Risk. Geophysical Research Letters, 2018, 45, 6215-6222.	4.0	55
35	Incorporating Snow Albedo Feedback into Downscaled Temperature and Snow Cover Projections for California's Sierra Nevada. Journal of Climate, 2017, 30, 1417-1438.	3.2	51
36	Circulation responses to snow albedo feedback in climate change. Geophysical Research Letters, 2009, 36, .	4.0	45

ALEX D HALL

#	Article	IF	CITATIONS
37	An Assessment of High-Resolution Gridded Temperature Datasets over California. Journal of Climate, 2018, 31, 3789-3810.	3.2	41
38	On the Connection Between Global Hydrologic Sensitivity and Regional Wet Extremes. Geophysical Research Letters, 2018, 45, 11,343.	4.0	40
39	Twenty-First-Century Snowfall and Snowpack Changes over the Southern California Mountains. Journal of Climate, 2016, 29, 91-110.	3.2	38
40	Dynamical controls on the diurnal cycle of temperature in complex topography. Climate Dynamics, 2007, 29, 277-292.	3.8	37
41	Warming increased bark beetleâ€induced tree mortality by 30% during an extreme drought in California. Global Change Biology, 2022, 28, 509-523.	9.5	36
42	Accumulation and melt dynamics of snowpack from a multiresolution regional climate model in the central Sierra Nevada, California. Journal of Geophysical Research, 2011, 116, .	3.3	35
43	Why Do Models Produce Spread in Snow Albedo Feedback?. Geophysical Research Letters, 2018, 45, 6223-6231.	4.0	34
44	The season for large fires in Southern California is projected to lengthen in a changing climate. Communications Earth & Environment, 2022, 3, .	6.8	31
45	A Hierarchical Statistical Framework for Emergent Constraints: Application to Snowâ€Albedo Feedback. Geophysical Research Letters, 2018, 45, 13,050.	4.0	30
46	The Convectiveâ€Toâ€Total Precipitation Ratio and the "Drizzling―Bias in Climate Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034198.	3.3	30
47	Understanding Endâ€ofâ€Century Snowpack Changes Over California's Sierra Nevada. Geophysical Research Letters, 2019, 46, 933-943.	4.0	28
48	Emergent constraints on climate sensitivities. Reviews of Modern Physics, 2021, 93, .	45.6	28
49	Twenty-First-Century Precipitation Changes over the Los Angeles Region*. Journal of Climate, 2015, 28, 401-421.	3.2	24
50	Future Warming and Intensification of Precipitation Extremes: A "Double Whammy―Leading to Increasing Flood Risk in California. Geophysical Research Letters, 2020, 47, e2020GL088679.	4.0	22
51	Importance of vegetation processes for model spread in the fast precipitation response to CO 2 forcing. Geophysical Research Letters, 2016, 43, 12,550.	4.0	20
52	Recent California tree mortality portends future increase in drought-driven forest die-off. Environmental Research Letters, 2020, 15, 124040.	5.2	20
53	Significant and Inevitable End-of-Twenty-First-Century Advances in Surface Runoff Timing in California's Sierra Nevada. Journal of Hydrometeorology, 2017, 18, 3181-3197.	1.9	17
54	Understanding Differences in California Climate Projections Produced by Dynamical and Statistical Downscaling. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032812.	3.3	16

ALEX D HALL

#	Article	IF	CITATIONS
55	Simulating and Evaluating Atmospheric Riverâ€Induced Precipitation Extremes Along the U.S. Pacific Coast: Case Studies From 1980–2017. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031554.	3.3	12
56	Assessing the Representation of Synoptic Variability Associated With California Extreme Precipitation in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033938.	3.3	11
57	Evaluation of the Tail of the Probability Distribution of Daily and Subdaily Precipitation in CMIP6 Models. Journal of Climate, 2021, 34, 2701-2721.	3.2	11
58	Assessing Prior Emergent Constraints on Surface Albedo Feedback in CMIP6. Journal of Climate, 2021, 34, 3889-3905.	3.2	11
59	Evaluation of a Reanalysisâ€Driven Configuration of WRF4 Over the Western United States From 1980 to 2020. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	9
60	Using Large Ensembles to Identify Regions of Systematic Biases in Moderateâ€ŧoâ€Heavy Daily Precipitation. Geophysical Research Letters, 2021, 48, e2020GL092026.	4.0	6
61	Natural Variability Has Concealed Increases in Western US Flood Hazard Since the 1970s. Geophysical Research Letters, 2022, 49, .	4.0	5
62	A Distinct Atmospheric Mode for California Precipitation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034403.	3.3	3