
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9561765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306, 666-669.	6.0	56,177
2	The rise of graphene. Nature Materials, 2007, 6, 183-191.	13.3	35,008
3	The electronic properties of graphene. Reviews of Modern Physics, 2009, 81, 109-162.	16.4	20,779
4	Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438, 197-200.	13.7	18,948
5	Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006, 97, 187401.	2.9	12,689
6	Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10451-10453.	3.3	10,229
7	A roadmap for graphene. Nature, 2012, 490, 192-200.	13.7	8,011
8	Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008, 320, 1308-1308.	6.0	7,667
9	Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007, 6, 652-655.	13.3	7,114
10	2D materials and van der Waals heterostructures. Science, 2016, 353, aac9439.	6.0	4,958
11	The structure of suspended graphene sheets. Nature, 2007, 446, 60-63.	13.7	4,511
12	Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 2009, 323, 610-613.	6.0	3,748
13	Chiral tunnelling and the Klein paradox inÂgraphene. Nature Physics, 2006, 2, 620-625.	6.5	3,383
14	Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3, 210-215.	15.6	3,125
15	Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 2008, 100, 016602.	2.9	2,919
16	Graphene plasmonics. Nature Photonics, 2012, 6, 749-758.	15.6	2,682
17	Room-Temperature Quantum Hall Effect in Graphene. Science, 2007, 315, 1379-1379.	6.0	2,662
18	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452

#	Article	IF	CITATIONS
19	Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012, 335, 947-950.	6.0	2,268
20	Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science, 2013, 340, 1311-1314.	6.0	2,179
21	Chaotic Dirac Billiard in Graphene Quantum Dots. Science, 2008, 320, 356-358.	6.0	2,098
22	Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016, 11, 218-230.	15.6	1,833
23	Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nature Physics, 2006, 2, 177-180.	6.5	1,785
24	Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Physical Review Letters, 2007, 99, 216802.	2.9	1,728
25	Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Letters, 2012, 12, 3925-3930.	4.5	1,696
26	Uniaxial strain in graphene by Raman spectroscopy: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>G</mml:mi>peak splitting, Grüneisen parameters, and sample orientation. Physical Review B, 2009, 79, .</mml:math 	1.1	1,662
27	Making graphene visible. Applied Physics Letters, 2007, 91, .	1.5	1,653
28	Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnology, 2013, 8, 100-103.	15.6	1,543
29	Graphene-Based Liquid Crystal Device. Nano Letters, 2008, 8, 1704-1708.	4.5	1,441
30	Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Letters, 2011, 11, 2396-2399.	4.5	1,440
31	Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature Materials, 2015, 14, 301-306.	13.3	1,397
32	Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Materials, 2007, 6, 198-201.	13.3	1,229
33	Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2003, 2, 461-463.	13.3	1,189
34	Fluorographene: A Twoâ€Ðimensional Counterpart of Teflon. Small, 2010, 6, 2877-2884.	5.2	1,146
35	Magnetic 2D materials and heterostructures. Nature Nanotechnology, 2019, 14, 408-419.	15.6	1,109
36	Cloning of Dirac fermions in graphene superlattices. Nature, 2013, 497, 594-597.	13.7	1,107

#	Article	IF	CITATIONS
37	The mechanics of graphene nanocomposites: A review. Composites Science and Technology, 2012, 72, 1459-1476.	3.8	1,076
38	Molecular Doping of Graphene. Nano Letters, 2008, 8, 173-177.	4.5	1,025
39	High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nature Nanotechnology, 2017, 12, 223-227.	15.6	996
40	Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small, 2011, 7, 465-468.	5.2	950
41	Raman Spectroscopy of Graphene Edges. Nano Letters, 2009, 9, 1433-1441.	4.5	933
42	Strong Suppression of Weak Localization in Graphene. Physical Review Letters, 2006, 97, 016801.	2.9	809
43	Raman fingerprint of charged impurities in graphene. Applied Physics Letters, 2007, 91, .	1.5	802
44	Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Materials, 2012, 11, 764-767.	13.3	796
45	Strong plasmonic enhancement of photovoltage in graphene. Nature Communications, 2011, 2, 458.	5.8	775
46	Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nature Physics, 2014, 10, 451-456.	6.5	737
47	Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Letters, 2012, 12, 1707-1710.	4.5	724
48	Nobel Lecture: Graphene: Materials in the Flatland. Reviews of Modern Physics, 2011, 83, 837-849.	16.4	708
49	Dirac cones reshaped by interaction effects in suspended graphene. Nature Physics, 2011, 7, 701-704.	6.5	703
50	Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Communications, 2014, 5, 5221.	5.8	686
51	Anomalously low dielectric constant of confined water. Science, 2018, 360, 1339-1342.	6.0	627
52	Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 2019, 567, 81-86.	13.7	621
53	Detecting topological currents in graphene superlattices. Science, 2014, 346, 448-451.	6.0	619
54	Macroscopic Graphene Membranes and Their Extraordinary Stiffness. Nano Letters, 2008, 8, 2442-2446.	4.5	607

#	Article	IF	CITATIONS
55	Rayleigh Imaging of Graphene and Graphene Layers. Nano Letters, 2007, 7, 2711-2717.	4.5	590
56	Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano, 2009, 3, 3963-3968.	7.3	587
57	Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite. Advanced Materials, 2010, 22, 2694-2697.	11.1	551
58	Single-Layer Behavior and Its Breakdown in Twisted Graphene Layers. Physical Review Letters, 2011, 106, 126802.	2.9	547
59	Graphene: New bridge between condensed matter physics and quantum electrodynamics. Solid State Communications, 2007, 143, 3-13.	0.9	544
60	Resonant tunnelling and negative differential conductance in graphene transistors. Nature Communications, 2013, 4, 1794.	5.8	542
61	On the roughness of single- and bi-layer graphene membranes. Solid State Communications, 2007, 143, 101-109.	0.9	530
62	The rise of graphene. , 2009, , 11-19.		530
63	Negative local resistance caused by viscous electron backflow in graphene. Science, 2016, 351, 1055-1058.	6.0	516
64	Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review B, 2013, 87, .	1.1	495
65	Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nature Communications, 2017, 8, 14430.	5.8	488
66	Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Physics, 2011, 7, 958-961.	6.5	486
67	Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Physical Review B, 2010, 81, .	1.1	477
68	Plasmon spectroscopy of free-standing graphene films. Physical Review B, 2008, 77, .	1.1	449
69	Ultrafast collinear scattering and carrier multiplication in graphene. Nature Communications, 2013, 4, 1987.	5.8	446
70	Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nature Nanotechnology, 2014, 9, 808-813.	15.6	435
71	Surface-Enhanced Raman Spectroscopy of Graphene. ACS Nano, 2010, 4, 5617-5626.	7.3	433
72	Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals. Nano Letters, 2014, 14, 3270-3276.	4.5	433

#	Article	IF	CITATIONS
73	Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain: Bubbles and Balloons. Nano Letters, 2012, 12, 617-621.	4.5	431
74	High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nature Communications, 2014, 5, 4555.	5.8	413
75	Subjecting a Graphene Monolayer to Tension and Compression. Small, 2009, 5, 2397-2402.	5.2	400
76	Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nature Communications, 2015, 6, 7507.	5.8	399
77	Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nature Materials, 2013, 12, 304-309.	13.3	382
78	Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature Communications, 2015, 6, 8579.	5.8	377
79	Graphene Spin Valve Devices. IEEE Transactions on Magnetics, 2006, 42, 2694-2696.	1.2	367
80	Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Physics, 2012, 8, 896-901.	6.5	365
81	Graphene Sensors. IEEE Sensors Journal, 2011, 11, 3161-3170.	2.4	364
82	Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. Nano Letters, 2015, 15, 4914-4921.	4.5	358
83	Effect of a High- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>î°</mml:mi></mml:math> Environment on Charge Carrier Mobility in Graphene. Physical Review Letters, 2009, 102, 206603.	2.9	347
84	Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons. Physical Review Letters, 2010, 105, 266601.	2.9	347
85	Interaction between Metal and Graphene: Dependence on the Layer Number of Graphene. ACS Nano, 2011, 5, 608-612.	7.3	324
86	High Broadâ€Band Photoresponsivity of Mechanically Formed InSe–Graphene van der Waals Heterostructures. Advanced Materials, 2015, 27, 3760-3766.	11.1	320
87	Electronic properties of graphene. Physica Status Solidi (B): Basic Research, 2007, 244, 4106-4111.	0.7	291
88	Exploring the Interface of Graphene and Biology. Science, 2014, 344, 261-263.	6.0	285
89	Compression Behavior of Single-Layer Graphenes. ACS Nano, 2010, 4, 3131-3138.	7.3	282
90	Scalable Production of Graphene-Based Wearable E-Textiles. ACS Nano, 2017, 11, 12266-12275.	7.3	274

#	Article	IF	CITATIONS
91	Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano, 2011, 5, 2231-2239.	7.3	271
92	Generating quantizing pseudomagnetic fields by bending graphene ribbons. Physical Review B, 2010, 81, .	1.1	270
93	Cyclotron resonance study of the electron and hole velocity in graphene monolayers. Physical Review B, 2007, 76, .	1.1	269
94	Thermal Conductivity of Graphene Laminate. Nano Letters, 2014, 14, 5155-5161.	4.5	268
95	Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy. Physical Review B, 2009, 80, .	1.1	266
96	Electrically controlled water permeation through graphene oxide membranes. Nature, 2018, 559, 236-240.	13.7	263
97	Interaction-Driven Spectrum Reconstruction in Bilayer Graphene. Science, 2011, 333, 860-863.	6.0	262
98	Thermal Properties of Graphene–Copper–Graphene Heterogeneous Films. Nano Letters, 2014, 14, 1497-1503.	4.5	260
99	The Worldwide Graphene Flake Production. Advanced Materials, 2018, 30, e1803784.	11.1	260
100	Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012, T146, 014006.	1.2	258
101	On Resonant Scatterers As a Factor Limiting Carrier Mobility in Graphene. Nano Letters, 2010, 10, 3868-3872.	4.5	256
102	Dissipative Quantum Hall Effect in Graphene near the Dirac Point. Physical Review Letters, 2007, 98, 196806.	2.9	255
103	Giant Nonlocality Near the Dirac Point in Graphene. Science, 2011, 332, 328-330.	6.0	255
104	Optimizing the Reinforcement of Polymer-Based Nanocomposites by Graphene. ACS Nano, 2012, 6, 2086-2095.	7.3	255
105	Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS Nano, 2020, 14, 12313-12340.	7.3	252
106	Raman Spectroscopy of Boron-Doped Single-Layer Graphene. ACS Nano, 2012, 6, 6293-6300.	7.3	245
107	Interaction phenomena in graphene seen through quantum capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3282-3286.	3.3	239
108	Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nature Electronics, 2018, 1, 344-349.	13.1	239

#	Article	IF	CITATIONS
109	Control of Radiation Damage in MoS ₂ by Graphene Encapsulation. ACS Nano, 2013, 7, 10167-10174.	7.3	237
110	WSe ₂ Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. Nano Letters, 2015, 15, 8223-8228.	4.5	231
111	Graphene Reknits Its Holes. Nano Letters, 2012, 12, 3936-3940.	4.5	227
112	Graphene-protected copper and silver plasmonics. Scientific Reports, 2014, 4, 5517.	1.6	217
113	All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. Journal of Materials Chemistry C, 2017, 5, 11640-11648.	2.7	217
114	Electronic properties of a biased graphene bilayer. Journal of Physics Condensed Matter, 2010, 22, 175503.	0.7	209
115	New directions in science and technology: two-dimensional crystals. Reports on Progress in Physics, 2011, 74, 082501.	8.1	206
116	Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nature Communications, 2018, 9, 5197.	5.8	206
117	Highly Conductive, Scalable, and Machine Washable Grapheneâ€Based Eâ€Textiles for Multifunctional Wearable Electronic Applications. Advanced Functional Materials, 2020, 30, 2000293.	7.8	204
118	Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano, 2018, 12, 10463-10472.	7.3	203
119	Density of States and Zero Landau Level Probed through Capacitance of Graphene. Physical Review Letters, 2010, 105, 136801.	2.9	202
120	High-pressure Raman spectroscopy of graphene. Physical Review B, 2009, 80, .	1.1	188
121	Quantum oscillations of the critical current and high-field superconducting proximity in ballisticÂgraphene. Nature Physics, 2016, 12, 318-322.	6.5	179
122	Engineering Graphene Flakes for Wearable Textile Sensors <i>via</i> Highly Scalable and Ultrafast Yarn Dyeing Technique. ACS Nano, 2019, 13, 3847-3857.	7.3	179
123	Ultrasensitive gas detection of large-area boron-doped graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14527-14532.	3.3	177
124	Graphene bubbles with controllable curvature. Applied Physics Letters, 2011, 99, .	1.5	176
125	Development of a universal stress sensor for graphene and carbon fibres. Nature Communications, 2011, 2, .	5.8	172
126	Metalâ^'Graphene Interaction Studied via Atomic Resolution Scanning Transmission Electron Microscopy. Nano Letters, 2011, 11, 1087-1092.	4.5	172

#	Article	IF	CITATIONS
127	Graphene: Materials in the Flatland (Nobel Lecture). Angewandte Chemie - International Edition, 2011, 50, 6986-7002.	7.2	172
128	Infrared spectroscopy of electronic bands in bilayer graphene. Physical Review B, 2009, 79, .	1.1	170
129	Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Applied Physics Letters, 2015, 106, .	1.5	170
130	Valley-addressable polaritons in atomically thin semiconductors. Nature Photonics, 2017, 11, 497-501.	15.6	169
131	Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Communications, 2009, 149, 1068-1071.	0.9	168
132	Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire. Nano Letters, 2016, 16, 3360-3366.	4.5	167
133	Heterostructures Produced from Nanosheet-Based Inks. Nano Letters, 2014, 14, 3987-3992.	4.5	165
134	Non-quantized penetration of magnetic field in the vortex state of superconductors. Nature, 2000, 407, 55-57.	13.7	163
135	Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons. Small, 2010, 6, 1108-1116.	5.2	163
136	Graphene devices for life. Nature Nanotechnology, 2014, 9, 744-745.	15.6	162
137	Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nature Physics, 2014, 10, 525-529.	6.5	161
138	Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano, 2014, 8, 10089-10100.	7.3	160
139	How Close Can One Approach the Dirac Point in Graphene Experimentally?. Nano Letters, 2012, 12, 4629-4634.	4.5	159
140	Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications. Scientific Reports, 2016, 5, 18298.	1.6	158
141	Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 2020, 14, 10976-10985.	7.3	157
142	Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nature Communications, 2021, 12, 854.	5.8	154
143	Photothermoelectric and Photoelectric Contributions to Light Detection in Metal–Graphene–Metal Photodetectors. Nano Letters, 2014, 14, 3733-3742.	4.5	153
144	Purity of graphene oxide determines its antibacterial activity. 2D Materials, 2016, 3, 025025.	2.0	150

#	Article	IF	CITATIONS
145	The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano, 2022, 16, 6960-7079.	7.3	149
146	Two-dimensional electron and hole gases at the surface of graphite. Physical Review B, 2005, 72, .	1.1	148
147	Electrochemical Behavior of Monolayer and Bilayer Graphene. ACS Nano, 2011, 5, 8809-8815.	7.3	148
148	Gap opening in the zeroth Landau level of graphene. Physical Review B, 2009, 80, .	1.1	146
149	Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Materials, 2017, 4, 035016.	2.0	146
150	Deformation of Wrinkled Graphene. ACS Nano, 2015, 9, 3917-3925.	7.3	143
151	Strain Mapping in a Graphene Monolayer Nanocomposite. ACS Nano, 2011, 5, 3079-3084.	7.3	142
152	Direct Experimental Evidence of Metal-Mediated Etching of Suspended Graphene. ACS Nano, 2012, 6, 4063-4071.	7.3	141
153	All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications. Scientific Reports, 2019, 9, 8035.	1.6	141
154	Nanolithography and manipulation of graphene using an atomic force microscope. Solid State Communications, 2008, 147, 366-369.	0.9	138
155	Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Applied Physics Letters, 2010, 97, .	1.5	138
156	Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nature Communications, 2015, 6, 6068.	5.8	136
157	Two-Dimensional Crystals: Beyond Graphene. Materials Express, 2011, 1, 10-17.	0.2	135
158	Towards super-clean graphene. Nature Communications, 2019, 10, 1912.	5.8	133
159	Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nature Communications, 2021, 12, 347.	5.8	132
160	Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities. Nano Letters, 2014, 14, 7003-7008.	4.5	129
161	Gate Tunable Infrared Phonon Anomalies in Bilayer Graphene. Physical Review Letters, 2009, 103, 116804.	2.9	127
162	Wideâ€Area Strain Sensors based upon Grapheneâ€Polymer Composite Coatings Probed by Raman Spectroscopy. Advanced Functional Materials, 2014, 24, 2865-2874.	7.8	122

#	Article	IF	CITATIONS
163	Exciton and trion dynamics in atomically thin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSe</mml:mi><mml:mn>2xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2Effect of localization. Physical Review B, 2016, 94, .</mml:mn></mml:msub></mml:mn></mml:msub></mml:math 	:mŋ>mħ> <td>nl;msub>il:msub></td>	nl;msub>il:msub>
164	High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science, 2017, 357, 181-184.	6.0	117
165	High-Performance Graphene-Based Natural Fiber Composites. ACS Applied Materials & Interfaces, 2018, 10, 34502-34512.	4.0	116
166	Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field. Nano Letters, 2017, 17, 2240-2245.	4.5	113
167	Graphene-based surface heater for de-icing applications. RSC Advances, 2018, 8, 16815-16823.	1.7	112
168	Macroscopic self-reorientation of interacting two-dimensional crystals. Nature Communications, 2016, 7, 10800.	5.8	108
169	Doping mechanisms in graphene-MoS2 hybrids. Applied Physics Letters, 2013, 103, .	1.5	107
170	Photoelectrochemistry of Pristine Mono- and Few-Layer MoS ₂ . Nano Letters, 2016, 16, 2023-2032.	4.5	107
171	Imaging of Anomalous Internal Reflections of Hyperbolic Phonon-Polaritons in Hexagonal Boron Nitride. Nano Letters, 2016, 16, 3858-3865.	4.5	106
172	Ultrahigh Performance of Nanoengineered Graphene-Based Natural Jute Fiber Composites. ACS Applied Materials & Interfaces, 2019, 11, 21166-21176.	4.0	106
173	Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nature Physics, 2021, 17, 619-626.	6.5	103
174	Raman Fingerprint of Aligned Graphene/h-BN Superlattices. Nano Letters, 2013, 13, 5242-5246.	4.5	102
175	Printable two-dimensional superconducting monolayers. Nature Materials, 2021, 20, 181-187.	13.3	102
176	From One Electron to One Hole: Quasiparticle Counting in Graphene Quantum Dots Determined by Electrochemical and Plasma Etching. Small, 2010, 6, 1469-1473.	5.2	98
177	Graphene-Enabled Adaptive Infrared Textiles. Nano Letters, 2020, 20, 5346-5352.	4.5	98
178	Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nature Photonics, 2021, 15, 493-498.	15.6	97
179	Recent advances in graphene and other 2D materials. Nano Materials Science, 2022, 4, 3-9.	3.9	97
180	Gain modulation by graphene plasmons in aperiodic lattice lasers. Science, 2016, 351, 246-248.	6.0	95

#	Article	lF	CITATIONS
181	All-2D Material Inkjet-Printed Capacitors: Toward Fully Printed Integrated Circuits. ACS Nano, 2019, 13, 54-60.	7.3	95
182	Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings. Nano Letters, 2016, 16, 5798-5805.	4.5	93
183	Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nature Communications, 2017, 8, 14410.	5.8	93
184	Micromagnetometry of two-dimensional ferromagnets. Nature Electronics, 2019, 2, 457-463.	13.1	93
185	Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nature Communications, 2021, 12, 2391.	5.8	92
186	Subatomic movements of a domain wall in the Peierls potential. Nature, 2003, 426, 812-816.	13.7	91
187	Quantum capacitance measurements of electron-hole asymmetry and next-nearest-neighbor hopping in graphene. Physical Review B, 2013, 88, .	1.1	88
188	Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. Science, 2016, 353, 575-579.	6.0	88
189	Piezoelectricity in Monolayer Hexagonal Boron Nitride. Advanced Materials, 2020, 32, e1905504.	11.1	87
190	Two-dimensional adaptive membranes with programmable water and ionic channels. Nature Nanotechnology, 2021, 16, 174-180.	15.6	86
191	Interaction of Metals with Suspended Graphene Observed by Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2012, 3, 953-958.	2.1	85
192	Ferromagnetic two-dimensional crystals: Single layers of K <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>CuF<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td>1.1</td><td>85</td></mml:mrow<></mml:msub></mml:math </mml:math 	1.1	85
193	<pre>/><mml:mn>4</mml:mn>. Physical Review B, 2013, 88, . Mobile metal adatoms on single layer, bilayer, and trilayer graphene: An<i>ab initio</i>DFT study with van der Waals corrections correlated with electron microscopy data. Physical Review B, 2013, 87, .</pre>	1.1	84
194	Electron transport in graphene. Physics-Uspekhi, 2008, 51, 744-748.	0.8	83
195	Biquadratic exchange interactions in two-dimensional magnets. Npj Computational Materials, 2020, 6, .	3.5	83
196	Graphene Oxide Dielectric Permittivity at GHz and Its Applications for Wireless Humidity Sensing. Scientific Reports, 2018, 8, 43.	1.6	81
197	Electronic phase separation in multilayer rhombohedral graphite. Nature, 2020, 584, 210-214.	13.7	81
198	Phonon-Assisted Resonant Tunneling of Electrons in Graphene–Boron Nitride Transistors. Physical Review Letters, 2016, 116, 186603.	2.9	78

#	Article	IF	CITATIONS
199	Edge currents shunt the insulating bulk in gapped graphene. Nature Communications, 2017, 8, 14552.	5.8	77
200	Strain and Charge Doping Fingerprints of the Strong Interaction between Monolayer MoS ₂ and Gold. Journal of Physical Chemistry Letters, 2020, 11, 6112-6118.	2.1	77
201	Discovery of 2D van der Waals layered MoSi2N4 family. National Science Review, 2020, 7, 1842-1844.	4.6	76
202	Submicron sensors of local electric field with single-electron resolution at room temperature. Applied Physics Letters, 2006, 88, 013901.	1.5	75
203	Scanning tunnelling microscopy of suspended graphene. Nanoscale, 2012, 4, 3065.	2.8	74
204	Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope. Nano Letters, 2017, 17, 5342-5349.	4.5	74
205	Composite super-moiré lattices in double-aligned graphene heterostructures. Science Advances, 2019, 5, eaay8897.	4.7	74
206	Quantum resistance metrology in graphene. Applied Physics Letters, 2008, 93, .	1.5	72
207	Graphene and other two-dimensional materials. Frontiers of Physics, 2019, 14, 1.	2.4	72
208	Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging. Applied Physics Letters, 2010, 97, 053110.	1.5	70
209	Giant Magnetodrag in Graphene at Charge Neutrality. Physical Review Letters, 2013, 111, 166601.	2.9	69
210	In situ manipulation of van der Waals heterostructures for twistronics. Science Advances, 2020, 6, .	4.7	69
211	Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites. ACS Nano, 2013, 7, 7287-7294.	7.3	68
212	Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited. Journal of Physical Chemistry C, 2019, 123, 11677-11685.	1.5	67
213	Spin splitting in graphene studied by means of tilted magnetic-field experiments. Physical Review B, 2011, 84, .	1.1	66
214	Stacking Boundaries and Transport in Bilayer Graphene. Nano Letters, 2014, 14, 2052-2057.	4.5	66
215	Electrically pumped single-defect light emitters in WSe ₂ . 2D Materials, 2016, 3, 025038.	2.0	66
216	High thermal conductivity of hexagonal boron nitride laminates. 2D Materials, 2016, 3, 011004.	2.0	66

#	Article	IF	CITATIONS
217	Valley coherent exciton-polaritons in a monolayer semiconductor. Nature Communications, 2018, 9, 4797.	5.8	66
218	Graphene in Multilayered CPP Spin Valves. IEEE Transactions on Magnetics, 2008, 44, 2624-2627.	1.2	65
219	Phonon and Structural Changes in Deformed Bernal Stacked Bilayer Graphene. Nano Letters, 2012, 12, 687-693.	4.5	65
220	Failure Processes in Embedded Monolayer Graphene under Axial Compression. Scientific Reports, 2014, 4, 5271.	1.6	65
221	Resonant tunnelling between the chiral Landau states of twisted graphene lattices. Nature Physics, 2015, 11, 1057-1062.	6.5	64
222	Graphene film for thermal management: A review. Nano Materials Science, 2021, 3, 1-16.	3.9	59
223	Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators. Applied Physics Letters, 2015, 107, .	1.5	58
224	Large tunable valley splitting in edge-free graphene quantum dots on boron nitride. Nature Nanotechnology, 2018, 13, 392-397.	15.6	58
225	Electron transfer kinetics on natural crystals of MoS ₂ and graphite. Physical Chemistry Chemical Physics, 2015, 17, 17844-17853.	1.3	57
226	Mid-infrared nanophotonics. Nature Materials, 2015, 14, 364-366.	13.3	57
227	Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3. Nature Communications, 2021, 12, 185.	5.8	57
228	Evolution of Gold Nanostructures on Graphene. Small, 2011, 7, 2868-2872.	5.2	56
229	Surface Hydrogenation and Optics of a Graphene Sheet Transferred onto a Plasmonic Nanoarray. Journal of Physical Chemistry C, 2012, 116, 3882-3887.	1.5	56
230	Mechanical Stability of Flexible Graphene-Based Displays. ACS Applied Materials & Interfaces, 2016, 8, 22605-22614.	4.0	56
231	Scaling of the quantum Hall plateau-plateau transition in graphene. Physical Review B, 2009, 80, .	1.1	55
232	Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures. Nano Letters, 2018, 18, 1628-1636.	4.5	55
233	The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2. Nature Communications, 2019, 10, 2330.	5.8	55
234	Layered material platform for surface plasmon resonance biosensing. Scientific Reports, 2019, 9, 20286.	1.6	55

#	Article	IF	CITATIONS
235	Stacking Order in Graphite Films Controlled by van der Waals Technology. Nano Letters, 2019, 19, 8526-8532.	4.5	54
236	Performance Improvement by Ozone Treatment of 2D PdSe ₂ . ACS Nano, 2020, 14, 5668-5677.	7.3	54
237	Graphene radio frequency and microwave passive components for low cost wearable electronics. 2D Materials, 2016, 3, 025021.	2.0	53
238	Graphene Thermal Emitter with Enhanced Joule Heating and Localized Light Emission in Air. ACS Photonics, 2019, 6, 2117-2125.	3.2	53
239	Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures. Nano Letters, 2017, 17, 5222-5228.	4.5	53
240	Giant Spin-Hall Effect Induced by the Zeeman Interaction in Graphene. Physical Review Letters, 2011, 107, 096601.	2.9	52
241	Electrical and optical characterization of atomically thin WS2. Dalton Transactions, 2014, 43, 10388.	1.6	52
242	Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructures. 2D Materials, 2018, 5, 041009.	2.0	52
243	Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures. Nature Communications, 2020, 11, 6021.	5.8	52
244	Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures. Nature Communications, 2019, 10, 2335.	5.8	51
245	Printed graphene/WS ₂ battery-free wireless photosensor on papers. 2D Materials, 2020, 7, 024004.	2.0	51
246	Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nature Nanotechnology, 2021, 16, 869-873.	15.6	50
247	Electrochemistry in a drop: a study of the electrochemical behaviour of mechanically exfoliated graphene on photoresist coated silicon substrate. Chemical Science, 2014, 5, 582-589.	3.7	48
248	Electrically controllable router of interlayer excitons. Science Advances, 2020, 6, .	4.7	48
249	Sustainable and Multifunctional Composites of Grapheneâ€Based Natural Jute Fibers. Advanced Sustainable Systems, 2021, 5, 2000228.	2.7	48
250	Environmental Impacts of Personal Protective Clothing Used to Combat COVID―19. Advanced Sustainable Systems, 2022, 6, 2100176.	2.7	48
251	Femtosecond carrier dynamics in bulk graphite and graphene paper. Chemical Physics Letters, 2011, 504, 37-40.	1.2	46
252	Engineering electrical properties of graphene: chemical approaches. 2D Materials, 2015, 2, 042001.	2.0	46

#	Article	IF	CITATIONS
253	Hydrogenation of Graphene by Reaction at High Pressure and High Temperature. ACS Nano, 2015, 9, 8279-8283.	7.3	46
254	Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nature Physics, 2019, 15, 32-36.	6.5	46
255	Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal. Physical Review Letters, 2017, 119, 157701.	2.9	44
256	High-Yield Production and Transfer of Graphene Flakes Obtained by Anodic Bonding. ACS Nano, 2011, 5, 7700-7706.	7.3	43
257	Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air. 2D Materials, 2018, 5, 011006.	2.0	43
258	Planar and van der Waals heterostructures for vertical tunnelling single electron transistors. Nature Communications, 2019, 10, 230.	5.8	43
259	Grapheneâ€Based Technologies for Tackling COVIDâ€19 and Future Pandemics. Advanced Functional Materials, 2021, 31, 2107407.	7.8	43
260	Direct growth of wafer-scale highly oriented graphene on sapphire. Science Advances, 2021, 7, eabk0115.	4.7	43
261	Topological phase singularities in atomically thin high-refractive-index materials. Nature Communications, 2022, 13, 2049.	5.8	43
262	Nonlocal Response and Anamorphosis: The Case of Few-Layer Black Phosphorus. Nano Letters, 2015, 15, 6991-6995.	4.5	42
263	Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field. Physical Review B, 2002, 65, .	1.1	41
264	Sub-bandgap Voltage Electroluminescence and Magneto-oscillations in a WSe ₂ Light-Emitting van der Waals Heterostructure. Nano Letters, 2017, 17, 1425-1430.	4.5	41
265	A Forceâ€Engineered Lint Roller for Superclean Graphene. Advanced Materials, 2019, 31, e1902978.	11.1	40
266	Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption. Carbon, 2020, 160, 307-316.	5.4	40
267	Light-induced irreversible structural phase transition in trilayer graphene. Light: Science and Applications, 2020, 9, 174.	7.7	40
268	Ion exchange in atomically thin clays and micas. Nature Materials, 2021, 20, 1677-1682.	13.3	40
269	Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications. IScience, 2022, 25, 103945.	1.9	40
270	Dimensional reduction, quantum Hall effect and layer parity in graphite films. Nature Physics, 2019, 15, 437-442.	6.5	39

#	Article	IF	CITATIONS
271	Programmed electrochemical exfoliation of graphite to high quality graphene. Chemical Communications, 2019, 55, 3379-3382.	2.2	38
272	Submicron probes for Hall magnetometry over the extended temperature range from helium to room temperature. Journal of Applied Physics, 2003, 93, 10053-10057.	1.1	37
273	Field-effect control of tunneling barrier height by exploiting graphene's low density of states. Journal of Applied Physics, 2013, 113, .	1.1	35
274	Beyond the wonder material. Physics World, 2009, 22, 27-30.	0.0	34
275	Quantum Rescaling, Domain Metastability, and Hybrid Domainâ€Walls in 2D CrI ₃ Magnets. Advanced Materials, 2021, 33, e2004138.	11.1	34
276	Out-of-equilibrium criticalities in graphene superlattices. Science, 2022, 375, 430-433.	6.0	34
277	Tunnel spectroscopy of localised electronic states in hexagonal boron nitride. Communications Physics, 2018, 1, .	2.0	33
278	Ultra-thin van der Waals crystals as semiconductor quantum wells. Nature Communications, 2020, 11, 125.	5.8	33
279	Spontaneous magnetization changes and nonlocal effects in mesoscopic ferromagnet-superconductor structures. Physical Review B, 2002, 65, .	1.1	32
280	Electrochemical investigation of chemical vapour deposition monolayer and bilayer graphene on the microscale. Electrochimica Acta, 2013, 110, 9-15.	2.6	32
281	Non-destructive electron microscopy imaging and analysis of biological samples with graphene coating. 2D Materials, 2016, 3, 045004.	2.0	32
282	High-temperature electronic devices enabled by hBN-encapsulated graphene. Applied Physics Letters, 2019, 114, .	1.5	32
283	Scanning probe lithography on graphene. Physica Status Solidi (B): Basic Research, 2010, 247, 2904-2908.	0.7	31
284	Long-Range Nonlocal Flow of Vortices in Narrow Superconducting Channels. Physical Review Letters, 2004, 92, 237001.	2.9	30
285	Screen-Printed Graphite Nanoplate Conductive Ink for Machine Learning Enabled Wireless Radiofrequency-Identification Sensors. ACS Applied Nano Materials, 2019, 2, 6197-6208.	2.4	29
286	Midgap radiative centers in carbon-enriched hexagonal boron nitride. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13214-13219.	3.3	29
287	Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nature Communications, 2021, 12, 70.	5.8	29
288	Graphene: The Magic of Flat Carbon. ECS Transactions, 2009, 19, 3-7.	0.3	28

#	Article	IF	CITATIONS
289	Measurement of Filling-Factor-Dependent Magnetophonon Resonances in Graphene Using Raman Spectroscopy. Physical Review Letters, 2013, 110, 227402.	2.9	28
290	Stacking transition in rhombohedral graphite. Frontiers of Physics, 2019, 14, 1.	2.4	28
291	Dielectric Breakdown in Single-Crystal Hexagonal Boron Nitride. ACS Applied Electronic Materials, 2021, 3, 3547-3554.	2.0	28
292	A highly conducting graphene film with dual-side molecular n-doping. Nanoscale, 2014, 6, 9545-9549.	2.8	27
293	Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science, 2022, 376, 184-188.	6.0	27
294	Effect of dielectric response on the quantum capacitance of graphene in a strong magnetic field. Physical Review B, 2013, 88, .	1.1	26
295	Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe ₂ /WSe ₂ Heterobilayers with Transfer-Induced Layer Corrugation. ACS Nano, 2020, 14, 11110-11119.	7.3	26
296	Long-range ballistic transport of Brown-Zak fermions in graphene superlattices. Nature Communications, 2020, 11, 5756.	5.8	25
297	Graphene electrodes for adaptive liquid crystal contact lenses. Optics Express, 2016, 24, 8782.	1.7	24
298	Van der Waals interaction affects wrinkle formation in two-dimensional materials. Proceedings of the United States of America, 2021, 118, .	3.3	24
299	Coexistence of electron and hole transport in graphene. Physical Review B, 2011, 84, .	1.1	23
300	Perspectives in the design and application of composites based on graphene derivatives and bioâ€based polymers. Polymer International, 2020, 69, 1173-1186.	1.6	23
301	Visualizing Piezoelectricity on 2D Crystals Nanobubbles. Advanced Functional Materials, 2021, 31, 2005053.	7.8	23
302	Development and Characterization of a Field-Deployable Ion-Trap Mass Spectrometer with an Atmospheric Pressure Interface. Analytical Chemistry, 2012, 84, 10105-10112.	3.2	22
303	Layer-engineered interlayer excitons. Science Advances, 2021, 7, .	4.7	22
304	Controlling Graphene Sheet Resistance for Broadband Printable and Flexible Artificial Magnetic Conductor-Based Microwave Radar Absorber Applications. IEEE Transactions on Antennas and Propagation, 2021, 69, 8503-8511.	3.1	22
305	Imaging of Bernal stacked and misoriented graphene and boron nitride: experiment and simulation. Journal of Microscopy, 2011, 244, 152-158.	0.8	21
306	GRAPHENE: MATERIALS IN THE FLATLAND. International Journal of Modern Physics B, 2011, 25, 4081-4106.	1.0	21

#	Article	IF	CITATIONS
307	Thermal activated rotation of graphene flake on graphene. 2D Materials, 2017, 4, 025015.	2.0	21
308	Stacking transition in bilayer graphene caused by thermally activated rotation. 2D Materials, 2017, 4, 011013.	2.0	20
309	Graphene-based papers as substrates for cell growth: Characterisation and impact on mammalian cells. FlatChem, 2018, 12, 17-25.	2.8	20
310	Stress transfer at the nanoscale on graphene ribbons of regular geometry. Nanoscale, 2019, 11, 14354-14361.	2.8	20
311	Photoquantum Hall Effect and Lightâ€Induced Charge Transfer at the Interface of Graphene/InSe Heterostructures. Advanced Functional Materials, 2019, 29, 1805491.	7.8	20
312	Barkhausen statistics from a single domain wall in thin films studied with ballistic Hall magnetometry. Physical Review B, 2006, 74, .	1.1	19
313	Moiré-Modulated Conductance of Hexagonal Boron Nitride Tunnel Barriers. Nano Letters, 2018, 18, 4241-4246.	4.5	19
314	Stronger Interlayer Interactions Contribute to Faster Hot Carrier Cooling of Bilayer Graphene under Pressure. Physical Review Letters, 2021, 126, 027402.	2.9	19
315	STEM plasmon spectroscopy of free standing graphene. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2265-2269.	0.8	18
316	Relativistic domain-wall dynamics in van der Waals antiferromagnet MnPS3. Npj Computational Materials, 2022, 8, .	3.5	18
317	Rapid progress in producing graphene. Nature, 2014, 505, 291-291.	13.7	17
318	Convergent beam electron holography for analysis of van der Waals heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7473-7478.	3.3	17
319	Highly Tunable Carrier Tunneling in Vertical Graphene–WS ₂ –Graphene van der Waals Heterostructures. ACS Nano, 2022, 16, 7880-7889.	7.3	17
320	Electromechanical Sensing of Substrate Charge Hidden under Atomic 2D Crystals. Nano Letters, 2014, 14, 3400-3404.	4.5	16
321	Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field. Physical Review B, 2015, 92, .	1.1	16
322	Resonantly excited exciton dynamics in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSe</mml:mi><mml:mn>2monolayers. Physical Review B, 2017, 96, .</mml:mn></mml:msub></mml:math 	nml:man> <td>າmlນຄsub></td>	າml ນ ຄsub>
323	Electron Tunneling through Boron Nitride Confirms Marcus–Hush Theory Predictions for Ultramicroelectrodes. ACS Nano, 2020, 14, 993-1002.	7.3	16
324	Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in manalithis dielectric microscavities 2D Materials 2020, 7, 031006	2.0	16

324 monolithic dielectric microcavities. 2D Materials, 2020, 7, 031006.

#	Article	IF	CITATIONS
325	Programmable Soft-Matter Electronics. Journal of Physical Chemistry Letters, 2021, 12, 2017-2022.	2.1	16
326	Domain wall dynamics in two-dimensional van der Waals ferromagnets. Applied Physics Reviews, 2021, 8, .	5.5	16
327	The Intricate Love Affairs between MoS ₂ and Metallic Substrates. Advanced Materials Interfaces, 2020, 7, 2001324.	1.9	15
328	Cyclotron resonance of electrons and holes in graphene monolayers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 237-243.	1.6	14
329	Propagating Plasmons in a Charge-Neutral Quantum Tunneling Transistor. ACS Photonics, 2017, 4, 3012-3017.	3.2	14
330	Inkjet-printed graphene Hall mobility measurements and low-frequency noise characterization. Nanoscale, 2020, 12, 6708-6716.	2.8	14
331	INTRODUCTION TO TWO-DIMENSIONAL MATERIALS. Surface Review and Letters, 2021, 28, 2140005.	0.5	14
332	High Mobility Two-Dimensional Bismuth Oxyselenide Single Crystals with Large Grain Size Grown by Reverse-Flow Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 49153-49162.	4.0	14
333	Scattering of electrons at a magnetic protuberance of submicron size. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 746-750.	1.3	13
334	Quantum Hall activation gaps in bilayer graphene. Solid State Communications, 2010, 150, 2209-2211.	0.9	13
335	NMR detects molecular interactions of graphene with aromatic and aliphatic hydrocarbons in water. 2D Materials, 2018, 5, 015003.	2.0	13
336	Thickness-Independent Energy Dissipation in Graphene Electronics. ACS Applied Materials & Interfaces, 2020, 12, 17706-17712.	4.0	13
337	High-Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures. Nanophotonics, 2020, 9, 1457-1467.	2.9	13
338	Degradation Chemistry and Kinetic Stabilization of Magnetic Crl ₃ . Journal of the American Chemical Society, 2022, 144, 5295-5303.	6.6	13
339	Domain wall propagation on nanometer scale: coercivity of a single pinning center. IEEE Transactions on Magnetics, 2002, 38, 2583-2585.	1.2	12
340	Mechanical stability of substrate-bound graphene in contact with aqueous solutions. 2D Materials, 2015, 2, 024011.	2.0	12
341	Tick-Borne Encephalitis Electrochemical Detection by Multilayer Perceptron on Liquid–Metal Interface. ACS Applied Bio Materials, 2020, 3, 7352-7356.	2.3	12
342	Phase-Changing in Graphite Assisted by Interface Charge Injection. Nano Letters, 2021, 21, 5648-5654.	4.5	12

#	Article	IF	CITATIONS
343	Electrically Controlled Thermal Radiation from Reduced Graphene Oxide Membranes. ACS Applied Materials & Interfaces, 2021, 13, 27278-27283.	4.0	12
344	Graphene standardization: The lesson from the East. Materials Today, 2021, 47, 9-15.	8.3	12
345	Magnetotransport in single-layer graphene in a large parallel magnetic field. Physical Review B, 2016, 94, .	1.1	11
346	Conformal screen printed graphene 4 × 4 wideband MIMO antenna on flexible substrate for 5G communication and IoT applications. 2D Materials, 2021, 8, 045021.	2.0	11
347	Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Materials, 2017, 4, 015032.	2.0	10
348	Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions. Nanoscale, 2018, 10, 3020-3025.	2.8	10
349	TECHNOLOGY AND APPLICATIONS OF GRAPHENE OXIDE MEMBRANES. Surface Review and Letters, 2021, 28, 2140004.	0.5	10
350	Direct Observation of Incommensurate–Commensurate Transition in Graphene-hBN Heterostructures via Optical Second Harmonic Generation. ACS Applied Materials & Interfaces, 2020, 12, 27758-27764.	4.0	10
351	Electroâ€Thermo Controlled Water Valve Based on 2D Graphene–Cellulose Hydrogels. Advanced Functional Materials, 2022, 32, .	7.8	10
352	Cracking bilayers. Nature Physics, 2009, 5, 862-863.	6.5	9
353	2D Electrolytes: Theory, Modeling, Synthesis, and Characterization. Advanced Materials, 2021, 33, 2100442.	11.1	9
354	Direct Visualization and Manipulation of Stacking Orders in Few-Layer Graphene by Dynamic Atomic Force Microscopy. Journal of Physical Chemistry Letters, 2021, 12, 7328-7334.	2.1	9
355	Nonlinear electron transport in normally pinched-off quantum wire. Europhysics Letters, 2000, 52, 660-666.	0.7	8
356	Scanning gate microscopy on a graphene quantum point contact. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1002-1004.	1.3	8
357	A Facile Route for Patterned Growth of Metal–Insulator Carbon Lateral Junction through One-Pot Synthesis. ACS Nano, 2015, 9, 8352-8360.	7.3	8
358	Dispersal of pristine graphene for biological studies. RSC Advances, 2016, 6, 69551-69559.	1.7	8
359	Imaging Two Dimensional Materials and their Heterostructures. Journal of Physics: Conference Series, 2017, 902, 012028.	0.3	8
360	Bloch Surface Waves for MoS2 Emission Coupling and Polariton Systems. Applied Sciences (Switzerland), 2017, 7, 1217.	1.3	8

#	Article	IF	CITATIONS
361	Multifunctional 2D materials for antiviral protection and detection. National Science Review, 2022, 9, nwab095.	4.6	8
362	Spin-polarized electron tunneling across magnetic dielectric. Applied Physics Letters, 2005, 86, 212501.	1.5	7
363	Graphene: The Magic of Flat Carbon. Electrochemical Society Interface, 2011, 20, 45-46.	0.3	7
364	Selective spectroscopy of tunneling transitions between the Landau levels in vertical double-gate graphene–boron nitride–graphene heterostructures. JETP Letters, 2016, 104, 334-340.	0.4	7
365	Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene. JETP Letters, 2019, 109, 482-489.	0.4	7
366	Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals. Frontiers of Physics, 2019, 14, 1.	2.4	7
367	Separation of volatile organic compounds using a MEMS separation column integrated with ion trap mass spectrometer. Sensors and Actuators B: Chemical, 2020, 307, 127588.	4.0	7
368	Twisted monolayer and bilayer graphene for vertical tunneling transistors. Applied Physics Letters, 2021, 118, .	1.5	7
369	Γ-X Tunnelling in GaAs/AlAs/GaAs Heterostructure. Japanese Journal of Applied Physics, 1998, 37, 3245-3247.	0.8	6
370	Quantized coexisting electrons and holes in graphene measured using temperature-dependent magnetotransport. Physical Review B, 2013, 87, .	1.1	6
371	Ore mineralogy and formation conditions of the Pirunkoukku gold occurrence (Finland). European Journal of Mineralogy, 2015, 27, 639-649.	0.4	6
372	Convergent beam electron diffraction of multilayer Van der Waals structures. Ultramicroscopy, 2020, 212, 112976.	0.8	6
373	Robust and Flexible Optically Active 2D Membranes Based on Encapsulation of Liquid Crystals in Graphene Oxide Pockets. Advanced Materials Interfaces, 2021, 8, 2101432.	1.9	6
374	Characterization of iodoheptafluoropropane as a dielectric etchant. I. Process performance evaluation. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1269.	1.6	5
375	Microscopic view on a single domain wall moving through ups and downs of an atomic washboard potential. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 406-409.	1.3	5
376	TRANSVERSE SPIN TRANSPORT IN GRAPHENE. International Journal of Modern Physics B, 2009, 23, 2641-2646.	1.0	5
377	Scanning Tunnelling Microscopy of Suspended Graphene. Journal of Physics: Conference Series, 2012, 371, 012070.	0.3	5
378	Growth of graphene on tantalum and its protective properties. Carbon, 2018, 139, 29-34.	5.4	5

#	Article	IF	CITATIONS
379	Grinding exfoliation for scalable production of 2D materials. National Science Review, 2020, 7, 559-560.	4.6	5
380	Resonant tunneling via donorXstates in the AlAs barrier and binding energies of donors bound toXXYandXZvalleys. Physical Review B, 2002, 66, .	1.1	4
381	Intrinsic Pinning of a Ferromagnetic Domain Wall in Yttrium Iron Garnet Films with Strong Uniaxial Anisotropy. Journal of Low Temperature Physics, 2005, 139, 65-72.	0.6	4
382	Spatial design and control of graphene flake motion. Physical Review B, 2017, 96, .	1.1	4
383	Observation of Spin and Valley Splitting of Landau Levels under Magnetic Tunneling in Graphene/Boron Nitride/Graphene Structures. JETP Letters, 2018, 107, 238-242.	0.4	4
384	Nanoarchitectonics of hyperbolic paraboloid 2D Graphene Oxide Membranes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2073-2079.	0.6	4
385	COERCIVITY OF SINGLE PINNING CENTER MEASURED BY HALL MICROMAGNETOMETRY. International Journal of Nanoscience, 2004, 03, 87-94.	0.4	3
386	Chlorosulfuric acid-assisted production of functional 2D materials. Npj 2D Materials and Applications, 2021, 5, .	3.9	3
387	Tunneling resonances in structures with a two-step barrier. JETP Letters, 1998, 67, 863-868.	0.4	2
388	Tunneling via impurity states related to the X valley in a thin AlAs barrier. Semiconductors, 2001, 35, 199-203.	0.2	2
389	Quenching of the Hall effect in localised high magnetic field regions. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 244-247.	1.3	2
390	Resonant tunnelling via states of the X-related donors located at different atomic layer in AlAs barrier. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 849-852.	1.3	2
391	METALLIC AND SEMICONDUCTOR HALL MICROPROBES FOR WIDE TEMPERATURE RANGE APPLICATIONS. International Journal of Nanoscience, 2004, 03, 123-130.	0.4	2
392	Intrinsic pinning of a ferromagnetic domain wall in yttrium iron garnet films with strong uniaxial anisotropy. Journal of Low Temperature Physics, 2005, 139, 65-72.	0.6	2
393	Graphene Based Spin Valve Devices. , 2006, , .		2
394	Fabrication of graphene nanostructures by probe nanoablation. Bulletin of the Lebedev Physics Institute, 2012, 39, 330-333.	0.1	2
395	Observation of Regions of Negative Differential Conductivity and Current Generation during Tunneling through Zero-Dimensional Defect Levels of the h-BN Barrier in Graphene/h-BN/Graphene Heterostructures. Semiconductors, 2019, 53, 1038-1041.	0.2	2
396	Field-induced insulating states in a graphene superlattice. Physical Review B, 2019, 99, .	1.1	2

#	Article	IF	CITATIONS
397	Holographic reconstruction of the interlayer distance of bilayer two-dimensional crystal samples from their convergent beam electron diffraction patterns. Ultramicroscopy, 2020, 219, 113020.	0.8	2
398	ENHANCEMENT OF REDUCED GRAPHENE OXIDE BOLOMETRIC PHOTORESPONSE VIA ADDITION OF GRAPHENE QUANTUM DOTS. Surface Review and Letters, 2021, 28, 2140011.	0.5	2
399	Technology and Applications of Graphene Oxide Membranes. , 2021, , 379-422.		2
400	Ferromagnetic domain wall on nanometer scale. Journal of Physics: Conference Series, 2005, 17, 101-107.	0.3	1
401	Cross sectional STEM imaging and analysis of multilayered two dimensional crystal heterostructure devices. Microscopy and Microanalysis, 2015, 21, 107-108.	0.2	1
402	Resonant tunnelling spectroscopy of van der Waals heterosystems. Russian Chemical Reviews, 2019, 88, 1081-1093.	2.5	1
403	Imaging defects in two-dimensional crystals by convergent-beam electron diffraction. Physical Review B, 2022, 105, .	1.1	1
404	Nanoscale light field imaging with graphene. Communications Materials, 2022, 3, .	2.9	1
405	<title>Quenching of the hall effect in localised high magnertic field region</title> . , 2002, , .		0
406	Barkhausen effect in a garnet film studied by ballistic hall micromagnetometry. Journal of Physics: Conference Series, 2005, 15, 125-130.	0.3	0
407	Quantum hall effect in graphene. , 2008, , .		0
408	Scanning Transmission Electron Microscopy of Metal-Graphene Interaction. Journal of Physics: Conference Series, 2012, 371, 012069.	0.3	0
409	Metals on BN Studied by High Resolution Transmission Electron Microscopy. Journal of Physics: Conference Series, 2012, 371, 012050.	0.3	0
410	Graphene-controlled Terahertz Plasmonic Laser. , 2013, , .		0
411	Ultrafast non-thermal electron dynamics in single layer graphene. , 2013, , .		0
412	High Angle Dark Field Imaging of Two-Dimensional Crystals. Journal of Physics: Conference Series, 2014, 522, 012077.	0.3	0
413	A three-beam aerosol backscatter correlation lidar for three-component wind profiling. Proceedings of SPIE, 2014, , .	0.8	0
414	Primary Au prospecting results in the Logrosán area (Central Iberian Zone, Spain) Journal of Iberian Geology, 2015, 41, .	0.7	0

#	Article	IF	CITATIONS
415	Strong exciton-photon coupling in monolayer heterostructures in tunable microcavities. , 2015, , .		0
416	Sub-diffractional, volume-confined polaritons in a natural hyperbolic material: hexagonal boron nitride (Presentation Recording). , 2015, , .		0
417	Understanding 2D Crystal Vertical Heterostructures at the Atomic Scale Using Advanced Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1714-1715.	0.2	0
418	From scientist to editor. Nature Nanotechnology, 2018, 13, 522-523.	15.6	0
419	Piezoelectric Materials: Piezoelectricity in Monolayer Hexagonal Boron Nitride (Adv. Mater. 1/2020). Advanced Materials, 2020, 32, 2070006.	11.1	0
420	On the Role of Structural Imperfections of Graphene in Resonant Tunneling through Localized States in the h-BN Barrier of van-der-Waals Heterostructures. Semiconductors, 2020, 54, 291-296.	0.2	0
421	HOLOGRAPHIC CONVERGENT ELECTRON BEAM DIFFRACTION (CBED) IMAGING OF TWO-DIMENSIONAL CRYSTALS. Surface Review and Letters, 2021, 28, 2140001.	0.5	0
422	Nanomagnets: Quantum Rescaling, Domain Metastability, and Hybrid Domainâ€Walls in 2D Crl ₃ Magnets (Adv. Mater. 5/2021). Advanced Materials, 2021, 33, 2170036.	11.1	0
423	Symmetry of diffraction patterns of two-dimensional crystal structures. Ultramicroscopy, 2021, 228, 113336.	0.8	0
424	Holographic Convergent Electron Beam Diffraction (CBED) Imaging of Two-dimensional Crystals. , 2021, , 303-331.		0
425	Gain Control using Graphene Plasmons in Aperiodic DFB lasers. , 2016, , .		0
426	Enhancement of Reduced Graphene Oxide Bolometric Photoresponse via Addition of Graphene Quantum Dots. , 2021, , 423-436.		0