
Francisco Sobrino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9560003/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines, 2021, 9, 477.	4.4	14
2	lmmunogenicity of Foot-and-Mouth Disease Virus Dendrimer Peptides: Need for a T-Cell Epitope and Ability to Elicit Heterotypic Responses. Molecules, 2021, 26, 4714.	3.8	1
3	Adaptive value of foot-and-mouth disease virus capsid substitutions with opposite effects on particle acid stability. Scientific Reports, 2021, 11, 23494.	3.3	0
4	Immunogenicity of a Dendrimer B2T Peptide Harboring a T-Cell Epitope From FMDV Non-structural Protein 3D. Frontiers in Veterinary Science, 2020, 7, 498.	2.2	13
5	Designing Functionally Versatile, Highly Immunogenic Peptide-Based Multiepitopic Vaccines against Foot-and-Mouth Disease Virus. Vaccines, 2020, 8, 406.	4.4	7
6	MDA5 cleavage by the Leader protease of foot-and-mouth disease virus reveals its pleiotropic effect against the host antiviral response. Cell Death and Disease, 2020, 11, 718.	6.3	15
7	Association of Porcine Swine Leukocyte Antigen (SLA) Haplotypes with B- and T-Cell Immune Response to Foot-and-Mouth Disease Virus (FMDV) Peptides. Vaccines, 2020, 8, 513.	4.4	7
8	Negatively charged amino acids at the foot-and-mouth disease virus capsid reduce the virion-destabilizing effect of viral RNA at acidic pH. Scientific Reports, 2020, 10, 1657.	3.3	1
9	A Single Dose of Dendrimer B2T Peptide Vaccine Partially Protects Pigs against Foot-and-Mouth Disease Virus Infection. Vaccines, 2020, 8, 19.	4.4	18
10	A bivalent Bâ€cell epitope dendrimer peptide can confer longâ€lasting immunity in swine against footâ€andâ€mouth disease. Transboundary and Emerging Diseases, 2020, 67, 1614-1622.	3.0	9
11	Swine T-Cells and Specific Antibodies Evoked by Peptide Dendrimers Displaying Different FMDV T-Cell Epitopes. Frontiers in Immunology, 2020, 11, 621537.	4.8	8
12	Inhibition of Porcine Viruses by Different Cell-Targeted Antiviral Drugs. Frontiers in Microbiology, 2019, 10, 1853.	3.5	6
13	Clinical Infections by Herpesviruses in Patients Treated with Valproic Acid: A Nested Case-Control Study in the Spanish Primary Care Database, BIFAP. Journal of Clinical Medicine, 2019, 8, 1442.	2.4	10
14	Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerging Microbes and Infections, 2019, 8, 624-636.	6.5	29
15	Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus. PLoS Pathogens, 2018, 14, e1007135.	4.7	35
16	Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. Journal of Virology, 2018, 92, .	3.4	5
17	Synthetic RNA derived from the foot-and-mouth disease virus genome elicits antiviral responses in bovine and porcine cells through IRF3 activation. Veterinary Microbiology, 2018, 221, 8-12.	1.9	3
18	A bivalent dendrimeric peptide bearing a T-cell epitope from foot-and-mouth disease virus protein 3A improves humoral response against classical swine fever virus. Virus Research, 2017, 238, 8-12.	2.2	9

#	Article	IF	CITATIONS
19	Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability. Veterinary Microbiology, 2017, 203, 275-279.	1.9	9
20	Combined administration of synthetic RNA and a conventional vaccine improves immune responses and protection against foot-and-mouth disease virus in swine. Antiviral Research, 2017, 142, 30-36.	4.1	20
21	Dendrimeric peptides can confer protection against foot-and-mouth disease virus in cattle. PLoS ONE, 2017, 12, e0185184.	2.5	19
22	The Amino Acid Substitution Q65H in the 2C Protein of Swine Vesicular Disease Virus Confers Resistance to Golgi Disrupting Drugs. Frontiers in Microbiology, 2016, 7, 612.	3.5	1
23	Equine Rhinitis A Virus Mutants with Altered Acid Resistance Unveil a Key Role of VP3 and Intrasubunit Interactions in the Control of the pH Stability of the Aphthovirus Capsid. Journal of Virology, 2016, 90, 9725-9732.	3.4	2
24	A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus. Vaccine, 2016, 34, 2066-2073.	3.8	32
25	First Complete Coding Sequence of a Spanish Isolate of Swine Vesicular Disease Virus. Genome Announcements, 2016, 4, .	0.8	3
26	Host sphingomyelin increases West Nile virus infection in vivo. Journal of Lipid Research, 2016, 57, 422-432.	4.2	43
27	Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide. Antiviral Research, 2016, 129, 74-80.	4.1	49
28	Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 307-315.	3.2	55
29	Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation. Viruses, 2015, 7, 3954-3973.	3.3	22
30	The pH Stability of Foot-and-Mouth Disease Virus Particles Is Modulated by Residues Located at the Pentameric Interface and in the N Terminus of VP1. Journal of Virology, 2015, 89, 5633-5642.	3.4	30
31	Multifunctionality of a Picornavirus Polymerase Domain: Nuclear Localization Signal and Nucleotide Recognition. Journal of Virology, 2015, 89, 6848-6859.	3.4	22
32	Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication. PLoS ONE, 2015, 10, e0141415.	2.5	4
33	Membrane Topology and Cellular Dynamics of Foot-and-Mouth Disease Virus 3A Protein. PLoS ONE, 2014, 9, e106685.	2.5	29
34	Protection of a Single Dose West Nile Virus Recombinant Subviral Particle Vaccine against Lineage 1 or 2 Strains and Analysis of the Cross-Reactivity with Usutu Virus. PLoS ONE, 2014, 9, e108056.	2.5	33
35	An Increase in Acid Resistance of Foot-and-Mouth Disease Virus Capsid Is Mediated by a Tyrosine Replacement of the VP2 Histidine Previously Associated with VPO Cleavage. Journal of Virology, 2014, 88, 3039-3042.	3.4	23
36	The Composition of West Nile Virus Lipid Envelope Unveils a Role of Sphingolipid Metabolism in Flavivirus Biogenesis. Journal of Virology, 2014, 88, 12041-12054.	3.4	125

#	Article	IF	CITATIONS
37	Protection against Rift Valley fever virus infection in mice upon administration of interferon-inducing RNA transcripts from the FMDV genome. Antiviral Research, 2014, 109, 64-67.	4.1	12
38	Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Research, 2013, 99, 172-179.	4.1	24
39	Characterization of a nuclear localization signal in the foot-and-mouth disease virus polymerase. Virology, 2013, 444, 203-210.	2.4	14
40	Delivery of synthetic RNA can enhance the immunogenicity of vaccines against foot-and-mouth disease virus (FMDV) in mice. Vaccine, 2013, 31, 4375-4381.	3.8	18
41	B Epitope Multiplicity and B/T Epitope Orientation Influence Immunogenicity of Foot-and-Mouth Disease Peptide Vaccines. Clinical and Developmental Immunology, 2013, 2013, 1-9.	3.3	23
42	Use of RNA Domains in the Viral Genome as Innate Immunity Inducers for Antiviral Strategies and Vaccine Improvement. , 2013, , .		1
43	Modulation of foot-and-mouth disease virus pH threshold for uncoating correlates with differential sensitivity to inhibition of cellular Rab GTPases and decreases infectivity in vivo. Journal of General Virology, 2012, 93, 2382-2386.	2.9	8
44	Mutations That Hamper Dimerization of Foot-and-Mouth Disease Virus 3A Protein Are Detrimental for Infectivity. Journal of Virology, 2012, 86, 11013-11023.	3.4	16
45	A T-cell epitope on NS3 non-structural protein enhances the B and T cell responses elicited by dendrimeric constructions against CSFV in domestic pigs. Veterinary Immunology and Immunopathology, 2012, 150, 36-46.	1.2	23
46	Acid-dependent viral entry. Virus Research, 2012, 167, 125-137.	2.2	46
47	Exploring IRES Region Accessibility by Interference of Foot-and-Mouth Disease Virus Infectivity. PLoS ONE, 2012, 7, e41382.	2.5	12
48	Plasma Membrane Phosphatidylinositol 4,5 Bisphosphate Is Required for Internalization of Foot-and-Mouth Disease Virus and Vesicular Stomatitis Virus. PLoS ONE, 2012, 7, e45172.	2.5	9
49	Protection against West Nile Virus Infection in Mice after Inoculation with Type I Interferon-Inducing RNA Transcripts. PLoS ONE, 2012, 7, e49494.	2.5	17
50	Inclusion of a specific T cell epitope increases the protection conferred against foot-and-mouth disease virus in pigs by a linear peptide containing an immunodominant B cell site. Virology Journal, 2012, 9, 66.	3.4	20
51	Partial protection against classical swine fever virus elicited by dendrimeric vaccine-candidate peptides in domestic pigs. Vaccine, 2011, 29, 4422-4429.	3.8	45
52	Foot-and-mouth disease virus particles inactivated with binary ethylenimine are efficiently internalized into cultured cells. Vaccine, 2011, 29, 9655-9662.	3.8	10
53	Immunomodulatory effect of swine CCL20 chemokine in DNA vaccination against CSFV. Veterinary Immunology and Immunopathology, 2011, 142, 243-251.	1.2	11
54	DNA immunization of pigs with foot-and-mouth disease virus minigenes: From partial protection to disease exacerbation. Virus Research, 2011, 157, 121-125.	2.2	14

#	Article	IF	CITATIONS
55	A DNA vaccine encoding foot-and-mouth disease virus B and T-cell epitopes targeted to class II swine leukocyte antigens protects pigs against viral challenge. Antiviral Research, 2011, 92, 359-363.	4.1	23
56	Inoculation of newborn mice with non-coding regions of foot-and-mouth disease virus RNA can induce a rapid, solid and wide-range protection against viral infection. Antiviral Research, 2011, 92, 500-504.	4.1	22
57	Peptide vaccine candidates against classical swine fever virus: T cell and neutralizing antibody responses of dendrimers displaying E2 and NS2–3 epitopes. Journal of Peptide Science, 2011, 17, 24-31.	1.4	30
58	A Single Amino Acid Substitution in the Capsid of Foot-and-Mouth Disease Virus Can Increase Acid Resistance. Journal of Virology, 2011, 85, 2733-2740.	3.4	40
59	Inhibition of Enveloped Virus Infection of Cultured Cells by Valproic Acid. Journal of Virology, 2011, 85, 1267-1274.	3.4	46
60	RNA Structural Domains in Noncoding Regions of the Foot-and-Mouth Disease Virus Genome Trigger Innate Immunity in Porcine Cells and Mice. Journal of Virology, 2011, 85, 6492-6501.	3.4	33
61	RNA immunization can protect mice against foot-and-mouth disease virus. Antiviral Research, 2010, 85, 556-558.	4.1	13
62	Cell density-dependent expression of viral antigens during persistence of foot-and-mouth disease virus in cell culture. Virology, 2010, 403, 47-55.	2.4	10
63	A Single Amino Acid Substitution in the Capsid of Foot-and-Mouth Disease Virus Can Increase Acid Lability and Confer Resistance to Acid-Dependent Uncoating Inhibition. Journal of Virology, 2010, 84, 2902-2912.	3.4	44
64	Attenuated Foot-and-Mouth Disease Virus RNA Carrying a Deletion in the 3′ Noncoding Region Can Elicit Immunity in Swine. Journal of Virology, 2009, 83, 3475-3485.	3.4	38
65	Discriminating Foot-and-Mouth Disease Virus-Infected and Vaccinated Animals by Use of β-Galactosidase Allosteric Biosensors. Vaccine Journal, 2009, 16, 1228-1235.	3.1	7
66	Internalization of Swine Vesicular Disease Virus into Cultured Cells: a Comparative Study with Foot-and-Mouth Disease Virus. Journal of Virology, 2009, 83, 4216-4226.	3.4	13
67	Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus. Virology, 2008, 374, 432-443.	2.4	23
68	Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus. Virology, 2008, 380, 34-45.	2.4	17
69	Recent advances in the development of recombinant vaccines against classical swine fever virus: Cellular responses also play a role in protection. Veterinary Journal, 2008, 177, 169-177.	1.7	59
70	Enhanced Mucosal Immunoglobulin A Response and Solid Protection against Foot-and-Mouth Disease Virus Challenge Induced by a Novel Dendrimeric Peptide. Journal of Virology, 2008, 82, 7223-7230.	3.4	92
71	Dendritic Cell Internalization of Foot-and-Mouth Disease Virus: Influence of Heparan Sulfate Binding on Virus Uptake and Induction of the Immune Response. Journal of Virology, 2008, 82, 6379-6394.	3.4	21
72	Tolerance to mutations in the foot-and-mouth disease virus integrin-binding RGD region is different in cultured cells and in vivo and depends on the capsid sequence context. Journal of General Virology, 2008, 89, 2531-2539.	2.9	18

#	Article	IF	CITATIONS
73	Guinea Pig-Adapted Foot-and-Mouth Disease Virus with Altered Receptor Recognition Can Productively Infect a Natural Host. Journal of Virology, 2007, 81, 8497-8506.	3.4	42
74	Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology, 2007, 369, 105-118.	2.4	66
75	DNA vaccines expressing B and T cell epitopes can protect mice from FMDV infection in the absence of specific humoral responses. Vaccine, 2006, 24, 3889-3899.	3.8	34
76	Rational Dissection of Binding Surfaces for Mimicking of Discontinuous Antigenic Sites. Chemistry and Biology, 2006, 13, 815-823.	6.0	9
77	Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells. Virology, 2006, 349, 409-421.	2.4	48
78	DNA immunization with 2C FMDV non-structural protein reveals the presence of an immunodominant CD8+, CTL epitope for Balb/c mice. Antiviral Research, 2006, 72, 178-189.	4.1	15
79	Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients. European Journal of Immunology, 2005, 35, 2313-2324.	2.9	16
80	Origin and evolution of viruses causing classical swine fever in Cuba. Virus Research, 2005, 112, 123-131.	2.2	46
81	Analysis of the immune response against mixotope peptide libraries from a main antigenic site of foot-and-mouth disease virus. Vaccine, 2005, 23, 2647-2657.	3.8	11
82	A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine, 2005, 23, 3741-3752.	3.8	73
83	15-Deoxy-î"12,14-prostaglandin J2 Induces Heme Oxygenase-1 Gene Expression in a Reactive Oxygen Species-dependent Manner in Human Lymphocytes. Journal of Biological Chemistry, 2004, 279, 21929-21937.	3.4	100
84	Human neutrophils synthesize IL-8 in an IgE-mediated activation. Journal of Leukocyte Biology, 2004, 76, 692-700.	3.3	28
85	Immunogenicity and T cell recognition in swine of foot-and-mouth disease virus polymerase 3D. Virology, 2004, 322, 264-275.	2.4	57
86	Towards a multi-site synthetic vaccine to foot-and-mouth disease: addition of discontinuous site peptide mimic increases the neutralization response in immunized animals. Vaccine, 2004, 22, 3523-3529.	3.8	15
87	Immunology of Foot-and-Mouth Disease. , 2004, , 175-222.		3
88	Evolution of foot-and-mouth disease virus. Virus Research, 2003, 91, 47-63.	2.2	273
89	Recovery of Infectious Foot-and-Mouth Disease Virus from Suckling Mice after Direct Inoculation with In Vitro-Transcribed RNA. Journal of Virology, 2003, 77, 11290-11295.	3.4	38
90	Evidence of the Coevolution of Antigenicity and Host Cell Tropism of Foot-and-Mouth Disease Virus In Vivo. Journal of Virology, 2003, 77, 1219-1226.	3.4	47

#	Article	IF	CITATIONS
91	Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-κB. Blood, 2003, 102, 662-671.	1.4	155
92	IRES-driven translation is stimulated separately by the FMDV 3'-NCR and poly(A) sequences. Nucleic Acids Research, 2002, 30, 4398-4405.	14.5	88
93	Foot-and-mouth disease virus. Comparative Immunology, Microbiology and Infectious Diseases, 2002, 25, 297-308.	1.6	180
94	Enhanced response to antibody binding in engineered β-galactosidase enzymatic sensors. BBA - Proteins and Proteomics, 2002, 1596, 212-224.	2.1	21
95	Foot-and-mouth disease virus: biology and prospects for disease control. Microbes and Infection, 2002, 4, 1183-1192.	1.9	86
96	Footâ€andâ€mouth disease in Europe. EMBO Reports, 2001, 2, 459-461.	4.5	54
97	Foot-and-mouth disease virus: a long known virus, but a current threat. Veterinary Research, 2001, 32, 1-30.	3.0	226
98	Interspecies Major Histocompatibility Complex-Restricted Th Cell Epitope on Foot-and-Mouth Disease Virus Capsid Protein VP4. Journal of Virology, 2000, 74, 4902-4907.	3.4	41
99	Characterization of Calcineurin in Human Neutrophils. Journal of Biological Chemistry, 1999, 274, 93-100.	3.4	94
100	Heterotypic inhibition of foot-and-mouth disease virus infection by combinations of RNA transcripts corresponding to the $5\hat{a}\in^2$ and $3\hat{a}\in^2$ regions. Antiviral Research, 1999, 44, 133-141.	4.1	13
101	Molecular epidemiology of classical swine fever in Cuba. Virus Research, 1999, 64, 61-67.	2.2	39
102	A RT-PCR assay for the differential diagnosis of vesicular viral diseases of swine. Journal of Virological Methods, 1998, 72, 227-235.	2.1	53
103	A procedure for detecting selection in highly variable viral genomes: evidence of positive selection in antigenic regions of capsid protein VP1 of foot-and-mouth disease virus. Journal of Virological Methods, 1998, 74, 215-221.	2.1	22
104	Antigenic Specificity of Porcine T Cell Response against Foot-and-Mouth Disease Virus Structural Proteins: Identification of T Helper Epitopes in VP1. Virology, 1994, 205, 24-33.	2.4	37
105	Direct PCR detection of foot-and-mouth disease virus. Journal of Virological Methods, 1994, 47, 345-349.	2.1	39
106	Transient inhibition of foot-and-mouth disease virus infection of BHK-21 cells by antisense oligonucleotides directed against the second functional initiator AUG. Antiviral Research, 1993, 22, 1-13.	4.1	20
107	A computer program for the design of PCR primers for diagnosis of highly variable genomes. Journal of Virological Methods, 1993, 41, 157-165.	2.1	14
108	Comparison of capsid protein VP1 of the viruses used for the production and challenge of foot-and-mouth disease vaccines in Spain. Vaccine, 1992, 10, 731-734.	3.8	15

#	Article	IF	CITATIONS
109	Primer design for specific diagnosis by PCR of highly variable RNA viruses: Typing of foot-and-mouth disease virus. Virology, 1992, 189, 363-367.	2.4	60
110	Genetic and phenotypic variability during replication of foot-and-mouth disease virus in swine. Virology, 1990, 179, 890-892.	2.4	50
111	Genetic Variability and Antigenic Diversity of Foot-and-Mouth Disease Virus. , 1990, , 233-266.		74
112	Genetic and immunogenic variations among closely related isolates of foot-and-mouth disease virus. Gene, 1988, 62, 75-84.	2.2	78
113	Establishment of cell lines persistently infected with foot-and-mouth disease virus. Virology, 1985, 145, 24-35.	2.4	133
114	The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance — a review. Gene, 1985, 40, 1-8.	2.2	484
115	Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology, 1983, 128, 310-318.	2.4	285
116	Lipid Involvement in Viral Infections: Present and Future Perspectives for the Design of Antiviral Strategies. , 0, , .		5
117	Error Frequencies of Picornavirus RNA Polymerases: Evolutionary Implications for Virus Populations. , 0, , 285-298.		8