Marco Donia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9559075/publications.pdf

Version: 2024-02-01

61984 49909 8,894 127 43 87 citations h-index g-index papers 140 140 140 14343 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive cell therapy with tumor-infiltrating lymphocytes in melanoma. Journal of Clinical Investigation, 2022, 132, .	8.2	54
2	Personalized therapy with peptide-based neoantigen vaccine (EVX-01) including a novel adjuvant, CAF®09b, in patients with metastatic melanoma. Oncolmmunology, 2022, 11, 2023255.	4.6	18
3	Clinical value of routine [18F]2â€fluoroâ€2â€deoxyâ€ <scp>d</scp> â€glucose positron emission tomography scans as a decision tool for early immunotherapy discontinuation in advanced melanoma. International Journal of Cancer, 2022, 150, 1870-1878.	5.1	5
4	Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive TÂcell therapy. Molecular Therapy - Oncolytics, 2022, 24, 417-428.	4.4	19
5	B Cells and Tertiary Lymphoid Structures: Friends or Foes in Cancer Immunotherapy?. Clinical Cancer Research, 2022, 28, 1751-1758.	7.0	39
6	Real-world data on melanoma brain metastases and survival outcome. Melanoma Research, 2022, Publish Ahead of Print, .	1.2	4
7	Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Expert Opinion on Biological Therapy, 2022, 22, 627-641.	3.1	19
8	Chitooligosaccharides Improve the Efficacy of Checkpoint Inhibitors in a Mouse Model of Lung Cancer. Pharmaceutics, 2022, 14, 1046.	4.5	3
9	Abstract CT535: High clinical efficacy in poor prognosis patients with metastatic melanoma treated with an IDO/PD-L1 peptide vaccine in combination with nivolumab. Cancer Research, 2022, 82, CT535-CT535.	0.9	1
10	First-in-human clinical trial of an oncolytic adenovirus armed with TNFa and IL-2 in patients with advanced melanoma receiving adoptive cell transfer of tumor-infiltrating lymphocytes Journal of Clinical Oncology, 2022, 40, TPS9590-TPS9590.	1.6	1
11	The effects of targeted immune-regulatory strategies on tumor-specific T-cell responses in vitro. Cancer Immunology, Immunotherapy, 2021, 70, 1771-1776.	4.2	8
12	Cytotoxic T cells isolated from healthy donors and cancer patients kill $TGF\hat{l}^2$ -expressing cancer cells in a $TGF\hat{l}^2$ -dependent manner. Cellular and Molecular Immunology, 2021, 18, 415-426.	10.5	10
13	Midkine—A potential therapeutic target in melanoma. Pigment Cell and Melanoma Research, 2021, 34, 834-835.	3.3	O
14	Bone marrow toxicity and immune reconstitution in melanoma and non-melanoma solid cancer patients after non-myeloablative conditioning with chemotherapy and checkpoint inhibition. Cytotherapy, 2021, 23, 724-729.	0.7	5
15	Loss of Ambra1 promotes melanoma growth and invasion. Nature Communications, 2021, 12, 2550.	12.8	30
16	Clinical efficacy of T-cell therapy after short-term BRAF-inhibitor priming in patients with checkpoint inhibitor-resistant metastatic melanoma., 2021, 9, e002703.		9
17	Transcriptomic signatures of tumors undergoing T cell attack. Cancer Immunology, Immunotherapy, 2021, , 1.	4.2	6
18	The Danish metastatic melanoma database (DAMMED): A nation-wide platform for quality assurance and research in real-world data on medical therapy in Danish melanoma patients. Cancer Epidemiology, 2021, 73, 101943.	1.9	21

#	Article	IF	CITATIONS
19	Adoptive cell therapy with tumor-infiltrating lymphocytes supported by checkpoint inhibition across multiple solid cancer types., 2021, 9, e003499.		23
20	Rapid Identification of the Tumor-Specific Reactive TIL Repertoire via Combined Detection of CD137, TNF, and IFN \hat{i}^3 , Following Recognition of Autologous Tumor-Antigens. Frontiers in Immunology, 2021, 12, 705422.	4.8	10
21	Comparison of Efficacy in Patients with Metastatic Melanoma Treated with Ipilimumab and Nivolumab Who Did or Did Not Discontinue Treatment Due to Immune-Related Adverse Events: A Real-World Data Study. Cancers, 2021, 13, 5550.	3.7	4
22	A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nature Medicine, 2021, 27, 2212-2223.	30.7	88
23	ESMO consensus conference recommendations on the management of metastatic melanoma: under the auspices of the ESMO Guidelines Committee. Annals of Oncology, 2020, 31, 1435-1448.	1.2	132
24	Qualitative Analysis of Tumor-Infiltrating Lymphocytes across Human Tumor Types Reveals a Higher Proportion of Bystander CD8+ T Cells in Non-Melanoma Cancers Compared to Melanoma. Cancers, 2020, 12, 3344.	3.7	19
25	Genetic Biomarkers in Melanoma of the Ocular Region: What the Medical Oncologist Should Know. International Journal of Molecular Sciences, 2020, 21, 5231.	4.1	15
26	Future role for adoptive T-cell therapy in checkpoint inhibitor-resistant metastatic melanoma. , 2020, 8, e000668.		31
27	ESMO consensus conference recommendations on the management of locoregional melanoma: under the auspices of the ESMO Guidelines Committee. Annals of Oncology, 2020, 31, 1449-1461.	1.2	69
28	Improved Progression-Free Long-Term Survival of a Nation-Wide Patient Population with Metastatic Melanoma. Cancers, 2020, 12, 2591.	3.7	8
29	Changes in the Tumor Immune Microenvironment during Disease Progression in Patients with Ovarian Cancer. Cancers, 2020, 12, 3828.	3.7	19
30	CTLA-4 blockade boosts the expansion of tumor-reactive CD8+ tumor-infiltrating lymphocytes in ovarian cancer. Scientific Reports, 2020, 10, 3914.	3.3	50
31	Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature, 2020, 577, 561-565.	27.8	1,209
32	Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nature Immunology, 2020, 21, 178-185.	14.5	186
33	Tumor-Infiltrating T Cells From Clear Cell Renal Cell Carcinoma Patients Recognize Neoepitopes Derived From Point and Frameshift Mutations. Frontiers in Immunology, 2020, 11, 373.	4.8	27
34	Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer. Oncotarget, 2020, 11, 2092-2105.	1.8	64
35	Acquired resistance to cancer immunotherapy. Seminars in Immunopathology, 2019, 41, 31-40.	6.1	34
36	The realâ€world outcome of metastatic melanoma: Unknown primary <i>vs</i> known cutaneous. International Journal of Cancer, 2019, 145, 3173-3174.	5.1	9

3

#	Article	IF	Citations
37	Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunology, Immunotherapy, 2019, 68, 1689-1700.	4.2	68
38	Empty peptide-receptive MHC class I molecules for efficient detection of antigen-specific T cells. Science Immunology, 2019, 4, .	11.9	64
39	Influence of mutagenic versus non-mutagenic pre-operative chemotherapy on the immune infiltration of residual breast cancer. Acta Oncol \tilde{A}^3 gica, 2019, 58, 1603-1611.	1.8	4
40	MERTK Acts as a Costimulatory Receptor on Human CD8+ T Cells. Cancer Immunology Research, 2019, 7, 1472-1484.	3.4	39
41	Real-World Impact of Immune Checkpoint Inhibitors in Metastatic Uveal Melanoma. Cancers, 2019, 11, 1489.	3.7	37
42	Long-Term Vemurafenib Exposure Induced Alterations of Cell Phenotypes in Melanoma: Increased Cell Migration and Its Association with EGFR Expression. International Journal of Molecular Sciences, 2019, 20, 4484.	4.1	18
43	Tumour-reactive T cell subsets in the microenvironment of ovarian cancer. British Journal of Cancer, 2019, 120, 424-434.	6.4	44
44	Collagen density regulates the activity of tumor-infiltrating T cells. , 2019, 7, 68.		239
45	Peptide Super-Agonist Enhances T-Cell Responses to Melanoma. Frontiers in Immunology, 2019, 10, 319.	4.8	18
46	Rare cause of spontaneous haemothorax: mediastinal and distant lymph node metastases from uveal melanoma. BMJ Case Reports, 2019, 12, e231534.	0.5	1
47	Principles of adoptive T cell therapy in cancer. Seminars in Immunopathology, 2019, 41, 49-58.	6.1	141
48	Differential effects of corticosteroids and anti‶NF on tumorâ€specific immune responses: implications for the management of irAEs. International Journal of Cancer, 2019, 145, 1408-1413.	5.1	36
49	HER2 CAR-T Cells Eradicate Uveal Melanoma and T-cell Therapy–Resistant Human Melanoma in IL2 Transgenic NOD/SCID IL2 Receptor Knockout Mice. Cancer Research, 2019, 79, 899-904.	0.9	84
50	The real-world impact of modern treatments on the survival of patients with metastatic melanoma. European Journal of Cancer, 2019, 108, 25-32.	2.8	47
51	Real-world evidence to guide healthcare policies in oncology. Oncotarget, 2019, 10, 4513-4515.	1.8	9
52	Cancer immunotherapy in patients with brain metastases. Cancer Immunology, Immunotherapy, 2018, 67, 703-711.	4.2	15
53	Peptide–MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations. Journal of Immunology, 2018, 200, 2263-2279.	0.8	87
54	T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression. Annals of Oncology, 2018, 29, 1575-1581.	1.2	53

#	Article	IF	CITATIONS
55	Development of anti-drug antibodies is associated with shortened survival in patients with metastatic melanoma treated with ipilimumab. Oncolmmunology, 2018, 7, e1424674.	4.6	43
56	T-cell Responses in the Microenvironment of Primary Renal Cell Carcinomaâ€"Implications for Adoptive Cell Therapy. Cancer Immunology Research, 2018, 6, 222-235.	3.4	59
57	The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncolmmunology, 2018, 7, e1390641.	4.6	33
58	Frequent adaptive immune responses against arginase-1. Oncolmmunology, 2018, 7, e1404215.	4.6	27
59	Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot study. Oncolmmunology, 2018, 7, e1502905.	4.6	80
60	The majority of patients with metastatic melanoma are not represented in pivotal phase III immunotherapy trials. European Journal of Cancer, 2017, 74, 89-95.	2.8	77
61	Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nature Communications, 2017, 8, 707.	12.8	123
62	PD-1+ Polyfunctional T Cells Dominate the Periphery after Tumor-Infiltrating Lymphocyte Therapy for Cancer. Clinical Cancer Research, 2017, 23, 5779-5788.	7.0	53
63	Acquired Immune Resistance Follows Complete Tumor Regression without Loss of Target Antigens or IFNI ³ Signaling. Cancer Research, 2017, 77, 4562-4566.	0.9	39
64	Cancer immunotherapy in patients with preexisting autoimmune disorders. Seminars in Immunopathology, 2017, 39, 333-337.	6.1	31
65	Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nature Communications, 2017, 8, 1738.	12.8	310
66	Influence of ipilimumab on expanded tumour derived T cells from patients with metastatic melanoma. Oncotarget, 2017, 8, 27062-27074.	1.8	26
67	PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. Oncolmmunology, 2016, 5, e1202391.	4.6	33
68	CCL22-specific T Cells: Modulating the immunosuppressive tumor microenvironment. Oncolmmunology, 2016, 5, e1238541.	4.6	56
69	Long-Lasting Complete Responses in Patients with Metastatic Melanoma after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes and an Attenuated IL2 Regimen. Clinical Cancer Research, 2016, 22, 3734-3745.	7.0	234
70	Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science, 2016, 352, 1337-1341.	12.6	414
71	Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nature Biotechnology, 2016, 34, 1037-1045.	17.5	279
72	The controversial role of TNF in melanoma. Oncolmmunology, 2016, 5, e1107699.	4.6	20

#	Article	lF	CITATIONS
73	More tricks with tetramers: a practical guide to staining T cells with peptide– <scp>MHC</scp> multimers. Immunology, 2015, 146, 11-22.	4.4	106
74	New developments in the management of advanced melanoma & amp; ndash; role of pembrolizumab. OncoTargets and Therapy, 2015, 8, 2535.	2.0	16
75	Reorienting the immune system in the treatment of cancer by using anti-PD-1 and anti-PD-L1 antibodies. Drug Discovery Today, 2015, 20, 1127-1134.	6.4	27
76	Aberrant Expression of MHC Class II in Melanoma Attracts Inflammatory Tumor-Specific CD4+ T- Cells, Which Dampen CD8+ T-cell Antitumor Reactivity. Cancer Research, 2015, 75, 3747-3759.	0.9	93
77	Broadening the repertoire of melanoma-associated T-cell epitopes. Cancer Immunology, Immunotherapy, 2015, 64, 609-620.	4.2	8
78	Tumorâ€infiltrating lymphocytes for the treatment of metastatic cancer. Molecular Oncology, 2015, 9, 1918-1935.	4.6	104
79	Tumor infiltrating lymphocyte therapy for ovarian cancer and renal cell carcinoma. Human Vaccines and Immunotherapeutics, 2015, 11, 2790-2795.	3.3	54
80	Antibody Stabilization of Peptide–MHC Multimers Reveals Functional T Cells Bearing Extremely Low-Affinity TCRs. Journal of Immunology, 2015, 194, 463-474.	0.8	55
81	Simplified protocol for clinical-grade tumor-infiltrating lymphocyte manufacturing with use of the Wave bioreactor. Cytotherapy, 2014, 16, 1117-1120.	0.7	47
82	Effects of ipilimumab on expanded tumor-infiltrating lymphocytes in patients with stage IV malignant melanoma Journal of Clinical Oncology, 2014, 32, 3020-3020.	1.6	2
83	Immune escape mechanisms associated with tumor recurrence after adoptive cell transfer immunotherapy Journal of Clinical Oncology, 2014, 32, 3054-3054.	1.6	0
84	PD-L1 specific tumor infiltrating lymphocytes occur frequently in melanoma and HNSCC patients Journal of Clinical Oncology, 2014, 32, 11083-11083.	1.6	0
85	Comparative Study of Rapamycin and Temsirolimus Demonstrates Superimposable Antiâ€Tumour Potency on Prostate Cancer Cells. Basic and Clinical Pharmacology and Toxicology, 2013, 112, 63-69.	2.5	14
86	Effector CD4 and CD8 T Cells and Their Role in the Tumor Microenvironment. Cancer Microenvironment, 2013, 6, 123-133.	3.1	263
87	Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy. Vaccine, 2013, 31, 639-646.	3.8	27
88	Methods to Improve Adoptive T-Cell Therapy for Melanoma: IFN- \hat{l}^3 Enhances Anticancer Responses of Cell Products for Infusion. Journal of Investigative Dermatology, 2013, 133, 545-552.	0.7	36
89	Biological insights into BRAF ^{V600} mutations in melanoma patient. Oncolmmunology, 2013, 2, e25594.	4.6	6
90	HLA-Restricted CTL That Are Specific for the Immune Checkpoint Ligand PD-L1 Occur with High Frequency in Cancer Patients. Cancer Research, 2013, 73, 1764-1776.	0.9	78

#	Article	IF	CITATIONS
91	Adoptive T-cell therapy (ACT) with TILs for metastatic melanoma: Clinical responses and durable persistence of anticancer responses in peripheral blood Journal of Clinical Oncology, 2013, 31, 3028-3028.	1.6	2
92	Analysis of $\hat{\text{Vl}}$ 1 T cells in clinical grade melanoma-infiltrating lymphocytes. Oncolmmunology, 2012, 1, 1297-1304.	4.6	39
93	BRAF inhibition improves tumor recognition by the immune system. Oncolmmunology, 2012, 1, 1476-1483.	4.6	82
94	Dissection of T-cell Antigen Specificity in Human Melanoma. Cancer Research, 2012, 72, 1642-1650.	0.9	137
95	Therapeutic Potential of Nitric Oxide-Modified Drugs in Colon Cancer Cells. Molecular Pharmacology, 2012, 82, 700-710.	2.3	28
96	Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion. Cancer Immunology, Immunotherapy, 2012, 61, 1221-1231.	4.2	11
97	Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. Journal of Translational Medicine, 2012, 10, 169.	4.4	134
98	Unique antineoplastic profile of Saquinavir-NO, a novel NO-derivative of the protease inhibitor Saquinavir, on the in vitro and in vivo tumor formation of A375 human melanoma cells. Oncology Reports, 2012, 28, 682-688.	2.6	18
99	Natural CD4+ T-Cell Responses against Indoleamine 2,3-Dioxygenase. PLoS ONE, 2012, 7, e34568.	2.5	43
100	Characterization and Comparison of  Standard' and  Young' Tumourâ€Infiltrating Lymphocytes for Adoptive Cell Therapy at a Danish Translational Research Institution. Scandinavian Journal of Immunology, 2012, 75, 157-167.	2.7	87
101	Advances in Targeting Signal Transduction Pathways. Oncotarget, 2012, 3, 1505-1521.	1.8	41
102	In vitro and in vivo anticancer action of Saquinavir-NO, a novel nitric oxide-derivative of the protease inhibitor saquinavir, on hormone resistant prostate cancer cells. Cell Cycle, 2011, 10, 492-499.	2.6	47
103	Phase II study of the antiretroviral activity and safety of the glucocorticoid receptor antagonist mifepristone in HIV-1-infected patients. International Journal of Molecular Medicine, 2011, 28, 437-42.	4.0	4
104	Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia, 2011, 25, 1064-1079.	7.2	190
105	Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia, 2011, 25, 1080-1094.	7.2	232
106	Cytotoxic and immune-sensitizing properties of nitric oxide-modified saquinavir in iNOS-positive human melanoma cells. Journal of Cellular Physiology, 2011, 226, 1803-1812.	4.1	30
107	Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging, 2011, 3, 192-222.	3.1	520
108	Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget, 2011, 2, 135-164.	1.8	509

#	Article	IF	CITATIONS
109	New Perspectives in HCV Therapy: Entry Inhibitors. Recent Patents on Anti-infective Drug Discovery, 2010, 5, 181-194.	0.8	2
110	Induction of caspase-independent apoptotic-like cell death of mouse mammary tumor TA3Ha cells in vitro and reduction of their lethality in vivo by the novel chemotherapeutic agent GIT-27NO. Free Radical Biology and Medicine, 2010, 48, 1090-1099.	2.9	10
111	Potential use of rapamycin in HIV infection. British Journal of Clinical Pharmacology, 2010, 70, 784-793.	2.4	67
112	Specific and Strain-Independent Effects of Dexamethasone in the Prevention and Treatment of Experimental Autoimmune Encephalomyelitis in Rodents. Scandinavian Journal of Immunology, 2010, 72, 396-407.	2.7	26
113	The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy. Cell Cycle, 2010, 9, 1781-1791.	2.6	110
114	Dominant roles of the Raf/MEK/ERK pathway in cell cycle progression, prevention of apoptosis and sensitivity to chemotherapeutic drugs. Cell Cycle, 2010, 9, 1629-1638.	2.6	41
115	Enhancing therapeutic efficacy by targeting non-oncogene addicted cells with combinations of signal transduction inhibitors and chemotherapy. Cell Cycle, 2010, 9, 1839-1846.	2.6	29
116	(S,R)-3-Phenyl-4,5-dihydro-5-isoxazole acetic acid–Nitric Oxide (GIT-27NO) – New Dress for Nitric Oxide Mission. , 2010, , 443-457.		0
117	The novel NO-donating compound GIT-27NO inhibits in vivo growth of human prostate cancer cells and prevents murine immunoinflammatory hepatitis. European Journal of Pharmacology, 2009, 615, 228-233.	3.5	15
118	Treatment with rapamycin ameliorates clinical and histological signs of protracted relapsing experimental allergic encephalomyelitis in Dark Agouti rats and induces expansion of peripheral CD4+CD25+Foxp3+ regulatory T cells. Journal of Autoimmunity, 2009, 33, 135-140.	6.5	70
119	Variable effects of cyclophosphamide in rodent models of experimental allergic encephalomyelitis. Clinical and Experimental Immunology, 2009, 159, 159-168.	2.6	26
120	Efficacy of Intracolonic Administration of Low-Molecular-Weight Heparin CB-01-05, Compared to Other Low-Molecular-Weight Heparins and Unfractionated Heparin, in Experimentally Induced Colitis in Rat. Digestive Diseases and Sciences, 2008, 53, 3170-3175.	2.3	23
121	In vitro inhibition of enterobacteria-reactive CD4+CD25â°' T cells and suppression of immunoinflammatory colitis in mice by the novel immunomodulatory agent VGX-1027. European Journal of Pharmacology, 2008, 586, 313-321.	3.5	14
122	Novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid–nitric oxide (GIT-27NO) induces p53 mediated apoptosis in human A375 melanoma cells. Nitric Oxide - Biology and Chemistry, 2008, 19, 177-183.	2.7	26
123	Breast cancer: Molecular basis and therapeutic strategies (Review). Molecular Medicine Reports, 2008, 1, 451-8.	2.4	16
124	In vitro, ex vivo and in vivo immunopharmacological activities of the isoxazoline compound VGX-1027: Modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clinical Immunology, 2007, 123, 311-323.	3.2	61
125	Analysis of interleukin (IL)- 1^2 IL- 1 receptor antagonist, soluble IL- 1 receptor type II and IL- 1 accessory protein in HCV-associated lymphoproliferative disorders. Oncology Reports, 2006, 15, 1305.	2.6	7
126	Analysis of interleukin (IL)-1beta IL-1 receptor antagonist, soluble IL-1 receptor type II and IL-1 accessory protein in HCV-associated lymphoproliferative disorders. Oncology Reports, 2006, 15, 1305-8.	2.6	16

#	Article	IF	CITATIONS
127	Breast cancer: Molecular basis and therapeutic strategies (Review). Molecular Medicine Reports, 0, , .	2.4	6