Rui Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9558621/publications.pdf

Version: 2024-02-01

51	6,426 citations	36	53 g-index
papers	citations	h-index	g-index
53 all docs	53 docs citations	53 times ranked	7128 citing authors

#	Article	IF	Citations
1	Synthesis of Copper Peroxide Nanodots for H ₂ O ₂ Self-Supplying Chemodynamic Therapy. Journal of the American Chemical Society, 2019, 141, 9937-9945.	13.7	759
2	Nearâ€Infraredâ€II Molecular Dyes for Cancer Imaging and Surgery. Advanced Materials, 2019, 31, e1900321.	21.0	631
3	Biomineralization-Inspired Synthesis of Copper Sulfide–Ferritin Nanocages as Cancer Theranostics. ACS Nano, 2016, 10, 3453-3460.	14.6	328
4	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 6492-6496.	13.8	328
5	Toxic Reactive Oxygen Species Enhanced Synergistic Combination Therapy by Selfâ€Assembled Metalâ€Phenolic Network Nanoparticles. Advanced Materials, 2018, 30, 1704877.	21.0	311
6	Repurposing Cyanine NIRâ€I Dyes Accelerates Clinical Translation of Nearâ€Infraredâ€II (NIRâ€II) Bioimaging. Advanced Materials, 2018, 30, e1802546.	21.0	249
7	Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nature Communications, 2017, 8, 1954.	12.8	237
8	Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nature Communications, 2020, 11, 4909.	12.8	199
9	Smart Nanovesicle-Mediated Immunogenic Cell Death through Tumor Microenvironment Modulation for Effective Photodynamic Immunotherapy. ACS Nano, 2020, 14, 620-631.	14.6	192
10	Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27141-27147.	7.1	173
11	Biodegradable Hollow Mesoporous Organosilica Nanotheranostics for Mild Hyperthermia-Induced Bubble-Enhanced Oxygen-Sensitized Radiotherapy. ACS Nano, 2018, 12, 1580-1591.	14.6	172
12	Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Science Advances, 2019, 5, eaaw0672.	10.3	171
13	Endogenous Labile Iron Pool-Mediated Free Radical Generation for Cancer Chemodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 15320-15330.	13.7	170
14	Impact of Semiconducting Perylene Diimide Nanoparticle Size on Lymph Node Mapping and Cancer Imaging. ACS Nano, 2017, 11, 4247-4255.	14.6	157
15	Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nature Communications, 2017, 8, 1777.	12.8	146
16	Activating Macrophageâ€Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles. Advanced Materials, 2020, 32, e2004853.	21.0	146
17	Activatable Fluorescence Probes for "Turn-On―and Ratiometric Biosensing and Bioimaging: From NIR-I to NIR-II. Bioconjugate Chemistry, 2020, 31, 276-292.	3. 6	140
18	Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nature Communications, 2020, 11, 4951.	12.8	132

#	Article	IF	Citations
19	Cancer Cell Membraneâ€Coated Nanoparticles for Personalized Therapy in Patientâ€Derived Xenograft Models. Advanced Functional Materials, 2019, 29, 1905671.	14.9	125
20	Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chemical Science, 2019, 10, 326-332.	7.4	124
21	Hierarchical Tumor Microenvironmentâ€Responsive Nanomedicine for Programmed Delivery of Chemotherapeutics. Advanced Materials, 2018, 30, e1803926.	21.0	119
22	Virus-mimetic nanovesicles as a versatile antigen-delivery system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6129-38.	7.1	118
23	Artificial local magnetic field inhomogeneity enhances T2 relaxivity. Nature Communications, 2017, 8, 15468.	12.8	114
24	Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases. ACS Nano, 2020, 14, 2569-2574.	14.6	103
25	Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics, 2019, 9, 7200-7209.	10.0	96
26	Acidity/Reducibility Dual-Responsive Hollow Mesoporous Organosilica Nanoplatforms for Tumor-Specific Self-Assembly and Synergistic Therapy. ACS Nano, 2018, 12, 12269-12283.	14.6	86
27	Evans Blue Attachment Enhances Somatostatin Receptor Subtype-2 Imaging and Radiotherapy. Theranostics, 2018, 8, 735-745.	10.0	73
28	Single Low-Dose Injection of Evans Blue Modified PSMA-617 Radioligand Therapy Eliminates Prostate-Specific Membrane Antigen Positive Tumors. Bioconjugate Chemistry, 2018, 29, 3213-3221.	3.6	68
29	Oxygenâ€Evolving Manganese Ferrite Nanovesicles for Hypoxiaâ€Responsive Drug Delivery and Enhanced Cancer Chemoimmunotherapy. Advanced Functional Materials, 2021, 31, 2008078.	14.9	65
30	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie, 2017, 129, 6592-6596.	2.0	63
31	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie - International Edition, 2019, 58, 8799-8803.	13.8	62
32	Beyond Photo: Xdynamic Therapies in Fighting Cancer. Advanced Materials, 2021, 33, e2007488.	21.0	58
33	A hypoxia responsive nanoassembly for tumor specific oxygenation and enhanced sonodynamic therapy. Biomaterials, 2021, 275, 120822.	11.4	57
34	Size-transformable antigen-presenting cell–mimicking nanovesicles potentiate effective cancer immunotherapy. Science Advances, 2020, 6, .	10.3	53
35	Efficient intracellular delivery of proteins by a multifunctional chimaeric peptide in vitro and in vivo. Nature Communications, 2021, 12, 5131.	12.8	44
36	Capturing Cytokines with Advanced Materials: A Potential Strategy to Tackle COVIDâ€19 Cytokine Storm. Advanced Materials, 2021, 33, e2100012.	21.0	43

#	Article	IF	Citations
37	Radioligand Therapy of Prostate Cancer with a Long-Lasting Prostate-Specific Membrane Antigen Targeting Agent 90Y-DOTA-EB-MCG. Bioconjugate Chemistry, 2018, 29, 2309-2315.	3.6	38
38	Zwitterionic-to-cationic charge conversion polyprodrug nanomedicine for enhanced drug delivery. Theranostics, 2020, 10, 6629-6637.	10.0	37
39	A genetic engineering strategy for editing near-infrared-II fluorophores. Nature Communications, 2022, 13 , .	12.8	33
40	An Albumin-Binding <i>T</i> ₁ – <i>T</i> ₂ Dual-Modal MRI Contrast Agents for Improved Sensitivity and Accuracy in Tumor Imaging. Bioconjugate Chemistry, 2019, 30, 1821-1829.	3.6	32
41	MRI Reporter Genes for Noninvasive Molecular Imaging. Molecules, 2016, 21, 580.	3.8	31
42	PET imaging of EGFR expression using an 18F-labeled RNA aptamer. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 948-956.	6.4	28
43	A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics, 2019, 9, 1358-1368.	10.0	21
44	Multimodal stratified imaging of nanovaccines in lymph nodes for improving cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 161-162, 145-160.	13.7	21
45	Ultrasmall Quantum Dots with Broadâ€Spectrum Metal Doping Ability for Trimodal Molecular Imaging. Advanced Functional Materials, 2019, 29, 1901671.	14.9	16
46	Converting Red Blood Cells to Efficient Microreactors for Blood Detoxification. Advanced Materials, 2017, 29, 1603673.	21.0	15
47	An Albumin Sandwich Enhances in Vivo Circulation and Stability of Metabolically Labile Peptides. Bioconjugate Chemistry, 2019, 30, 1711-1723.	3.6	13
48	Shielding Unit Engineering of NIR-II Molecular Fluorophores for Improved Fluorescence Performance and Renal Excretion Ability. Frontiers in Chemistry, 2021, 9, 739802.	3.6	10
49	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie, 2019, 131, 8891-8895.	2.0	7
50	In Vivo Imaging: Multiplexed NIRâ€II Probes for Lymph Nodeâ€Invaded Cancer Detection and Imagingâ€Guided Surgery (Adv. Mater. 11/2020). Advanced Materials, 2020, 32, 2070086.	21.0	6
51	A potent neutralizing and protective antibody against a conserved continuous epitope on HSV glycoprotein D. Antiviral Research, 2022, 201, 105298.	4.1	3