Meenu Saraf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9558108/publications.pdf

Version: 2024-02-01

257450 243625 2,224 82 24 44 citations h-index g-index papers 82 82 82 2108 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. Journal of Plant Interactions, 2010, 5, 51-58.	2.1	293
2	Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological Research, 2014, 169, 18-29.	5.3	225
3	Enhancement of plant growth and decontamination of nickelâ€spiked soil using PGPR. Journal of Basic Microbiology, 2009, 49, 195-204.	3.3	105
4	Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. Journal of Plant Interactions, 2017, 12, 480-487.	2.1	85
5	Radiation, radionuclides and bacteria: An in-perspective review. Journal of Environmental Radioactivity, 2017, 180, 27-35.	1.7	74
6	Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-protocol, 2019, 9, e3230.	0.4	71
7	Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World Journal of Microbiology and Biotechnology, 2012, 28, 891-899.	3.6	67
8	Biofortification of Triticum aestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocatalysis and Agricultural Biotechnology, 2017, 9, 120-126.	3.1	66
9	Growth Enhancement of Chickpea in Saline Soils Using Plant Growth-Promoting Rhizobacteria. Journal of Plant Growth Regulation, 2012, 31, 53-62.	5.1	63
10	Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. Archives of Microbiology, 2020, 202, 665-676.	2.2	60
11	Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environmental Sustainability, 2018, 1, 357-365.	2.8	56
12	Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Biophysical Chemistry, 2020, 264, 106425.	2.8	54
13	Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. European Polymer Journal, 2019, 119, 298-310.	5 . 4	52
14	Evaluation of Multispecies Plant-Growth-Promoting Consortia for the Growth Promotion of Jatropha curcas L Journal of Plant Growth Regulation, 2012, 31, 588-598.	5.1	51
15	Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. European Journal of Soil Biology, 2013, 55, 47-54.	3.2	42
16	Evaluation and biochemical characterization of a distinctive pyoverdin from a pseudomonas isolated from chickpea rhizosphere. Brazilian Journal of Microbiology, 2012, 43, 639-648.	2.0	40
17	Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in <i>Glycine max</i> L Archives of Phytopathology and Plant Protection, 2015, 48, 459-474.	1.3	40
18	Biocontrol efficacy of (i>Trichoderma (i>asperellum MSST against tomato wilting by (i>Fusarium oxysporum (i>f. sp. (i>lycopersici (i>. Archives of Phytopathology and Plant Protection, 2017, 50, 228-238.	1.3	38

#	Article	IF	CITATIONS
19	Combinatorial assessment on dominance and informative diversity of PGPR from rhizosphere of <i>Jatropha curcas</i> L Journal of Basic Microbiology, 2010, 50, 211-217.	3.3	35
20	Identifying structural–functional analogue of GRL0617, the only well-established inhibitor for papain-like protease (PLpro) of SARS-CoV2 from the pool of fungal metabolites using docking and molecular dynamics simulation. Molecular Diversity, 2022, 26, 309-329.	3.9	33
21	Isolation of Rhizobacteria from <i>Jatropha curcas</i> and characterization of produced ACC deaminase. Journal of Basic Microbiology, 2012, 52, 285-295.	3.3	30
22	Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. South African Journal of Botany, 2020, 134, 27-35.	2.5	28
23	The Role of ACC Deaminase Producing PGPR in Sustainable Agriculture. Microbiology Monographs, 2010, , 365-385.	0.6	27
24	Characterization of novel thorium tolerant Ochrobactrum intermedium AM7 in consort with assessing its EPS-Thorium binding. Journal of Hazardous Materials, 2020, 388, 122047.	12.4	26
25	Breaking bad: Better call gingerol for improving antibiotic susceptibility of Pseudomonas aeruginosa by inhibiting multiple quorum sensing pathways. Microbiological Research, 2021, 252, 126863.	5.3	26
26	Selenorhizobacteria: As biofortification tool in sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 2018, 14, 198-203.	3.1	25
27	The rise of gingerol as anti-QS molecule: Darkest episode in the LuxR-mediated bioluminescence saga. Bioorganic Chemistry, 2020, 99, 103823.	4.1	23
28	Twin Peaks: Presenting the Antagonistic Molecular Interplay of Curcumin with LasR and LuxR Quorum Sensing Pathways. Current Microbiology, 2020, 77, 1800-1810.	2.2	23
29	Exemplifying the next generation of antibiotic susceptibility intensifiers of phytochemicals by LasR-mediated quorum sensing inhibition. Scientific Reports, 2021, 11, 22421.	3.3	23
30	Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density. Plant and Soil, 2018, 424, 273-288.	3.7	22
31	Sterenin M as a potential inhibitor of SARS-CoV-2 main protease identified from MeFSAT database using molecular docking, molecular dynamics simulation and binding free energy calculation. Computers in Biology and Medicine, 2021, 135, 104568.	7.0	22
32	Application of Statistically Based Experimental Designs to Optimize Cellulase Production and Identification of Gene. Natural Products and Bioprospecting, 2014, 4, 341-351.	4.3	20
33	Proposing a fungal metabolite-flaviolin as a potential inhibitor of 3CL ^{pro} of novel coronavirus SARS-CoV-2 identified using docking and molecular dynamics. Journal of Biomolecular Structure and Dynamics, 2022, 40, 348-360.	3.5	20
34	Meticulous assessment of natural compounds from NPASS database for identifying analogue of GRL0617, the only known inhibitor for SARS-CoV2 papain-like protease (PLpro) using rigorous computational workflow. Molecular Diversity, 2022, 26, 389-407.	3.9	18
35	Decoding the mojo of plant-growth-promoting microbiomes. Physiological and Molecular Plant Pathology, 2021, 115, 101687.	2.5	18
36	Comprehensive depiction of novel heavy metal tolerant and EPS producing bioluminescent Vibrio alginolyticus PBR1 and V. rotiferianus PBL1 confined from marine organisms. Microbiological Research, 2020, 238, 126526.	5.3	17

#	Article	IF	Citations
37	Optimization of cadmium and lead biosorption onto marine Vibrio alginolyticus PBR1 employing a Box-Behnken design. Chemical Engineering Journal Advances, 2020, 4, 100043.	5.2	16
38	Exemplifying an archetypal thorium-EPS complexation by novel thoriotolerant Providencia thoriotolerans AM3. Scientific Reports, 2021, 11, 3189.	3.3	16
39	Isolation and identification of allelochemicals produced by <i>B. sonorensis</i> for suppression of charcoal rot of <i>Arachis hypogaea</i> L Journal of Basic Microbiology, 2015, 55, 635-644.	3.3	14
40	Interaction of root colonizing biocontrol agents demonstrates the antagonistic effect against Fusarium oxysporum f. sp. lycopersici on tomato. European Journal of Plant Pathology, 2017, 149, 425-433.	1.7	14
41	Polyhydroxyalkanoates: An Exotic Gleam in the Gloomy Tale of Plastics. Journal of Polymers and the Environment, 2021, 29, 2013-2032.	5.0	14
42	Assessment of ecological diversity of rhizobacterial communities in vermicompost and analysis of their potential to improve plant growth. Biologia (Poland), 2014, 69, 968-976.	1.5	13
43	Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants. Heliyon, 2021, 7, e08446.	3.2	13
44	Biosynthesis and purification of indole-3-acetic acid by halotolerant rhizobacteria isolated from Little Runn of Kachchh. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101435.	3.1	12
45	Microbes as a boon for the bane of heavy metals. Environmental Sustainability, 2020, 3, 233-255.	2.8	12
46	Bacterial Indole-3-Acetic Acid Influences Soil Nitrogen Acquisition in Barley and Chickpea. Plants, 2021, 10, 780.	3.5	12
47	Nutrient Availability and Management in the Rhizosphere by Microorganisms. , 2012, , 301-326.		11
48	Purification and characterization of antifungal chitinase from Bacillus safensis MBCU6 and its application for production of chito-oligosaccharides. Biologia (Poland), 2015, 70, 863-868.	1.5	10
49	Microbial enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase: An elixir for plant under stress. Physiological and Molecular Plant Pathology, 2021, 115, 101664.	2.5	10
50	Perspectives and Application of Halophilic Enzymes. Sustainable Development and Biodiversity, 2015, , 403-419.	1.7	9
51	Isolation and screening of bacteria from radionuclide containing soil for bioremediation of contaminated sites. Environmental Sustainability, 2019, 2, 255-264.	2.8	9
52	Walking through the wonder years of artificial DNA: peptide nucleic acid. Molecular Biology Reports, 2020, 47, 8113-8131.	2.3	9
53	Perspectives of PGPR in Agri-Ecosystems. , 2011, , 361-385.		8
54	Curse of La Corona: unravelling the scientific and psychological conundrums of the 21st century pandemic. Molecular Diversity, 2022, 26, 555-568.	3.9	8

#	Article	IF	CITATIONS
55	Repurposing the antibacterial drugs for inhibition of SARS-CoV2-PLpro using molecular docking, MD simulation and binding energy calculation. Molecular Diversity, 2022, 26, 2189-2209.	3.9	8
56	Rhizospheric Microflora: A Natural Alleviator of Drought Stress in Agricultural Crops. Microorganisms for Sustainability, 2019, , 103-115.	0.7	8
57	Perceiving SARS-CoV-2 Mpro and PLpro dual inhibitors from pool of recognized antiviral compounds of endophytic microbes: an in silico simulation study. Structural Chemistry, 2022, 33, 1619-1643.	2.0	8
58	Bacterial Determinants and Plant Defense Induction: Their Role as Biocontrol Agents in Sustainable Agriculture., 2016,, 187-204.		7
59	Potential of Rhizobia in Productivity Enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L. Cultivated in the Western Himalaya. , 2013, , 127-165.		7
60	Rhizobacteria for Management of Nematode Disease in Plants., 2013,, 379-404.		6
61	Effect of carbaryl and 2,4-D to nitrogenase and uptake hydrogenase in agar cultures and root nodules formed by Rhizobium leguminosarum Journal of General and Applied Microbiology, 1994, 40, 569-574.	0.7	5
62	In Vitro Evaluation of PGPR Strains for Their Biocontrol Potential Against Fungal Pathogens. , 2014, , 293-305.		5
63	Comparative Study of Different Soil Amendments andÂMicrobes for Integrated Nutrient Management andÂGrowth Promotion of <i>Jatropha Curcas</i> Journal of Plant Nutrition, 2014, 37, 2209-2226.	1.9	5
64	Plant Growth-Promoting Rhizobacteria (PGPR) as Protagonists of Ever-Sustained Agriculture: An Introduction. Sustainable Development and Biodiversity, 2019, , 1-10.	1.7	5
65	Effects of carbaryl and 2,4-D on growth, nitrogenase and uptake hydrogenase activity in agar culture and root nodules formed by Bradyrhizobium japonicum. Microbiological Research, 1994, 149, 401-406.	5. 3	4
66	Multifarious allelochemicals exhibiting antifungal activity from Bacillus subtilis MBCU5. 3 Biotech, 2017, 7, 175.	2.2	4
67	Integrated Diseases Management in Groundnut for Sustainable Productivity., 2013,, 351-377.		3
68	Strategic enhancement of Desertifilum tharense MSAK01 on dairy wastewater: an integrated approach for remediation and biomass production. Applied Water Science, 2017, 7, 2779-2785.	5.6	3
69	Unravelling the Interaction of Plant and Their Phyllosphere Microbiome. , 2017, , 157-172.		3
70	Hormonal Signaling by PGPR Improves Plant Health Under Stress Conditions. , 2012, , 119-140.		3
71	Antifungal Compounds from Pseudomonads and the Study of Their Molecular Features for Disease Suppression Against Soil Borne Pathogens., 2015,, 179-192.		2
72	Elicitation of plant defense enzymes against Fusarium oxysporum f. sp. lycopersici in tomato plant using a novel rhizobacteria Providencia rettgeri MSS2. Biocatalysis and Agricultural Biotechnology, 2017, 12, 308-313.	3.1	2

#	Article	IF	CITATIONS
73	Role of lipopolysaccaride extracted from Alcaligenes faecalis as elicitor for the induction of plant defense against fusarium wilt. Journal of Plant Pathology, 2020, 102, 351-357.	1.2	2
74	Microbial technologies in textile industries: an elixir for the greener environment., 2021,, 173-189.		2
75	Effect of 2,4-D on NR, NiR and Leghaemoglobin Synthesis in Root Nodules Formed by Bradyrhizobium japonicum in Glycine max Microbes and Environments, 1999, 14, 219-225.	1.6	1
76	Genomic appraisal of Klebsiella PGPB isolated from soil to enhance the growth of barley. Genes and Genomics, 2021, 43, 869-883.	1.4	1
77	Emergence of Methylobacterium spp. as Potential Organism in Agroecosystems. Sustainable Development and Biodiversity, 2015, , 53-68.	1.7	1
78	Host plant rhizo-microbiome interactions: Seasonal variation and microbial community structure analysis associated with Barleria prionitis. Ecological Genetics and Genomics, 2022, 22, 100109.	0.5	1
79	Enhanced detection of heavy metals using Vibrio alginolyticus PBR1 by optimizing luminescence medium through statistical modeling. Environmental Sustainability, 2020, 3, 437-452.	2.8	O
80	An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators. Molecular Biotechnology, 2022, 64, 109-129.	2.4	0
81	Evaluation of selenium biofortification strategies in Phaseolus vulgaris through selenocysteine methyltransferase gene expression. Environmental Sustainability, 0 , 1 .	2.8	O
82	COMPREHENSIVE EVALUATION OF EXPRESSION PLATFORM: CHERRY PICKING THE â€~RIGHT' TO ACCOMPLIS THE â€~BEST. Towards Excellence, 0, , 143-165.	H _{0.0}	0