
Alessandra Sacchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9557847/publications.pdf Version: 2024-02-01

ALESSANDRA SACCHI

#	Article	IF	CITATIONS
1	GRAd-COV2, a gorilla adenovirus-based candidate vaccine against COVID-19, is safe and immunogenic in younger and older adults. Science Translational Medicine, 2022, 14, eabj1996.	12.4	18
2	Down Syndrome patients with COVID-19 pneumonia: A high-risk category for unfavourable outcome. International Journal of Infectious Diseases, 2021, 103, 607-610.	3.3	9
3	The unbalanced p53/SIRT1 axis may impact lymphocyte homeostasis in COVID-19 patients. International Journal of Infectious Diseases, 2021, 105, 49-53.	3.3	38
4	Risk and predictive factors of prolonged viral RNA shedding in upper respiratory specimens in a large cohort of COVID-19 patients admitted to an Italian reference hospital. International Journal of Infectious Diseases, 2021, 105, 532-539.	3.3	20
5	PMN-MDSC Frequency Discriminates Active Versus Latent Tuberculosis and Could Play a Role in Counteracting the Immune-Mediated Lung Damage in Active Disease. Frontiers in Immunology, 2021, 12, 594376.	4.8	11
6	Immunogenicity and safety of BNT162b2 COVIDâ€19 vaccine in a chronic lymphocytic leukaemia patient. Journal of Cellular and Molecular Medicine, 2021, 25, 6460-6462.	3.6	2
7	Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis. Journal of Immunology, 2021, 206, 2420-2429.	0.8	13
8	Impact of ART on dynamics of growth factors and cytokines in primary HIV infection. Cytokine, 2020, 125, 154839.	3.2	12
9	Per2 Upregulation in Circulating Hematopoietic Progenitor Cells During Chronic HIV Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 362.	3.9	6
10	Early expansion of myeloid-derived suppressor cells inhibits SARS-CoV-2 specific T-cell response and may predict fatal COVID-19 outcome. Cell Death and Disease, 2020, 11, 921.	6.3	96
11	Virological Characterization of the First 2 COVID-19 Patients Diagnosed in Italy: Phylogenetic Analysis, Virus Shedding Profile From Different Body Sites, and Antibody Response Kinetics. Open Forum Infectious Diseases, 2020, 7, ofaa403.	0.9	17
12	An Inflammatory Profile Correlates With Decreased Frequency of Cytotoxic Cells in Coronavirus Disease 2019. Clinical Infectious Diseases, 2020, 71, 2272-2275.	5.8	91
13	Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19). Cell Death and Differentiation, 2020, 27, 3196-3207.	11.2	196
14	Persistent gamma delta Tâ€cell dysfunction in HCV/HIV coâ€infection despite directâ€acting antiviral therapyâ€induced cure. Journal of Viral Hepatitis, 2020, 27, 754-756.	2.0	2
15	2019-novel Coronavirus severe adult respiratory distress syndrome in two cases in Italy: An uncommon radiological presentation. International Journal of Infectious Diseases, 2020, 93, 192-197.	3.3	145
16	Myeloid Derived Suppressor Cells Expansion Persists After Early ART and May Affect CD4 T Cell Recovery. Frontiers in Immunology, 2019, 10, 1886.	4.8	15
17	Vδ2 T-Cells Kill ZIKV-Infected Cells by NKG2D-Mediated Cytotoxicity. Microorganisms, 2019, 7, 350.	3.6	9
18	In Human Immunodeficiency Virus primary infection, early combined antiretroviral therapy reduced <i>γδ</i> Tâ€cell activation but failed to restore their polyfunctionality. Immunology, 2019, 157, 322-330.	4.4	6

Alessandra Sacchi

#	Article	IF	CITATIONS
19	NaÃ⁻ve/Effector CD4 T cell ratio as a useful predictive marker of immune reconstitution in late presenter HIV patients: A multicenter study. PLoS ONE, 2019, 14, e0225415.	2.5	15
20	IL-18 and Stem Cell Factor affect hematopoietic progenitor cells in HIV-infected patients treated during primary HIV infection. Cytokine, 2018, 103, 34-37.	3.2	8
21	Intrahepatic Vγ9Vδ2 T-cells from HCV-infected patients show an exhausted phenotype but can inhibit HCV replication. Virus Research, 2018, 243, 31-35.	2.2	8
22	A new procedure to analyze polymorphonuclear myeloid derived suppressor cells in cryopreserved samples cells by flow cytometry. PLoS ONE, 2018, 13, e0202920.	2.5	7
23	Myeloid-Derived Suppressor Cells Specifically Suppress IFN- \hat{I}^3 Production and Antitumor Cytotoxic Activity of Vl ² T Cells. Frontiers in Immunology, 2018, 9, 1271.	4.8	35
24	Bone Marrow CD34 ⁺ Progenitor Cells from HIV-Infected Patients Show an Impaired T Cell Differentiation Potential Related to Proinflammatory Cytokines. AIDS Research and Human Retroviruses, 2017, 33, 590-596.	1.1	17
25	In HIV/HCV co-infected patients T regulatory and myeloid-derived suppressor cells persist after successful treatment with directly acting antivirals. Journal of Hepatology, 2017, 67, 422-424.	3.7	20
26	HIV-Specific CD8 T Cells Producing CCL-4 Are Associated With Worse Immune Reconstitution During Chronic Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 75, 338-344.	2.1	12
27	Dendritic cells activation is associated with sustained virological response to telaprevir treatment of HCV-infected patients. Clinical Immunology, 2017, 183, 82-90.	3.2	Ο
28	Human Zika infection induces a reduction of IFN-Î ³ producing CD4 T-cells and a parallel expansion of effector Vδ2 T-cells. Scientific Reports, 2017, 7, 6313.	3.3	35
29	Granulocytic Myeloid–Derived Suppressor Cells Increased in Early Phases of Primary HIV Infection Depending on TRAIL Plasma Level. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 74, 575-582.	2.1	25
30	Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections. PLoS Neglected Tropical Diseases, 2017, 11, e0005645.	3.0	46
31	Modulation of Phenotype and Function of Human CD4+CD25+ T Regulatory Lymphocytes Mediated by cAMP-Elevating Agents. Frontiers in Immunology, 2016, 7, 358.	4.8	8
32	Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection. Cell Death and Disease, 2016, 7, e2164-e2164.	6.3	51
33	The Different Roles of Interleukin 7 and Interleukin 18 in Affecting Lymphoid Hematopoietic Progenitor Cells and CD4 Homeostasis in Naive Primary and Chronic HIV-Infected Patients. Clinical Infectious Diseases, 2016, 63, 1683-1684.	5.8	3
34	In HIV-positive patients, myeloid-derived suppressor cells induce T-cell anergy by suppressing CD3ζ expression through ELF-1 inhibition. Aids, 2015, 29, 2397-2407.	2.2	48
35	Primary and Chronic HIV Infection Differently Modulates Mucosal Vδ1 and Vδ2 T-Cells Differentiation Profile and Effector Functions. PLoS ONE, 2015, 10, e0129771.	2.5	17
36	Vγ9Vδ2 T-Cell Polyfunctionality Is Differently Modulated in HAART-Treated HIV Patients according to CD4 T-Cell Count. PLoS ONE, 2015, 10, e0132291.	2.5	10

#	Article	IF	CITATIONS
37	Early ART in primary HIV infection may also preserve lymphopoiesis capability in circulating haematopoietic progenitor cells: a case report. Journal of Antimicrobial Chemotherapy, 2015, 70, 1598-1600.	3.0	6
38	Granulocytic Myeloid Derived Suppressor Cells Expansion during Active Pulmonary Tuberculosis Is Associated with High Nitric Oxide Plasma Level. PLoS ONE, 2015, 10, e0123772.	2.5	67
39	Modulation of Polyfunctional HIV-Specific CD8 T Cells in Patients Responding Differently to Antiretroviral Therapy. International Journal of Immunopathology and Pharmacology, 2014, 27, 291-297.	2.1	4
40	HIV Infection of Monocytes-Derived Dendritic Cells Inhibits Vγ9VÎ′2 T Cells Functions. PLoS ONE, 2014, 9, e111095.	2.5	12
41	An abnormal phenotype of lung Vγ9Vδ2 T cells impairs their responsiveness in tuberculosis patients. Cellular Immunology, 2013, 282, 106-112.	3.0	17
42	Chronic HIV-Infected Patients Show an Impaired Dendritic Cells Differentiation of Bone Marrow CD34+ Cells. Journal of Acquired Immune Deficiency Syndromes (1999), 2013, 64, 342-344.	2.1	7
43	In HIV/HCV Coinfected Patients Dendritic Cell Activation State Is Not Associated With IL28B Genotype. Journal of Infectious Diseases, 2013, 208, 364-365.	4.0	0
44	HIV Impairs CD34+- Derived Monocytic Precursor Differentiation into Functional Dendritic Cells. International Journal of Immunopathology and Pharmacology, 2013, 26, 717-724.	2.1	0
45	Interferon-α Improves Phosphoantigen-Induced Vγ9Vδ2 T-Cells Interferon-γ Production during Chronic HCV Infection. PLoS ONE, 2012, 7, e37014.	2.5	23
46	The basal activation state of DC subsets correlates with anti-HCV treatment outcome in HCV/HIV co-infected patients. Clinical Immunology, 2011, 138, 178-186.	3.2	6
47	Co-stimulatory molecule CD80 expression may correlate with anti-HCV treatment outcome. Gut, 2011, 60, 1161-1162.	12.1	3
48	Innate gamma/delta T-cells during HIV infection: Terra relatively Incognita in novel vaccination strategies?. AIDS Reviews, 2011, 13, 3-12.	1.0	42
49	Characterization of transglutaminase type II role in dendritic cell differentiation and function. Journal of Leukocyte Biology, 2010, 88, 181-188.	3.3	29
50	Activated Vγ9Vδ2 T Cells Trigger Granulocyte Functions via MCP-2 Release. Journal of Immunology, 2009, 182, 522-529.	0.8	35
51	Cutting Edge: TGF-β1 and IL-15 Induce FOXP3+ γδ Regulatory T Cells in the Presence of Antigen Stimulation. Journal of Immunology, 2009, 183, 3574-3577.	0.8	147
52	CD3ζ Downâ€Modulation May Explain Vγ9VÎ′2 T Lymphocyte Anergy in HIVâ€Infected Patients. Journal of Infectious Diseases, 2009, 199, 432-436.	4.0	8
53	Zoledronic acid and interleukin-2 treatment improves immunocompetence in HIV-infected persons by activating Vγ9Vδ2 T cells. Aids, 2009, 23, 555-565.	2.2	55
54	Inhibition of T cell proliferation by cholera toxin involves the modulation of costimulatory molecules CTLA-4 and CD28. Immunology Letters, 2008, 115, 59-69.	2.5	6

#	Article	IF	CITATIONS
55	GB-Virus Type C Effect on HIV Infection, Interferon System, and Dendritric Cells. Archives of Medical Research, 2008, 39, 362-363.	3.3	3
56	GB Virus Type C–Driven Protection in HIV/HCV Coinfection: Possible Role of Interferon Gamma and Dendritic Cell Activation. Gastroenterology, 2008, 134, 1631-1633.	1.3	3
57	Activation of Interferon Response Genes and of Plasmacytoid Dendritic Cells in HIV-1 Positive Subjects with GB Virus C Co-Infection. International Journal of Immunopathology and Pharmacology, 2008, 21, 161-171.	2.1	24
58	Do human $\hat{I}^{3}\hat{I}$ T cells respond to M tuberculosis protein antigens?. Blood, 2008, 112, 4776-4777.	1.4	4
59	Differentiation of Monocytes Into CD1aâ^ Dendritic Cells Correlates With Disease Progression in HIV-Infected Patients. Journal of Acquired Immune Deficiency Syndromes (1999), 2007, 46, 519-528.	2.1	10
60	Central Memory Vγ9Vδ2 T Lymphocytes Primed and Expanded by Bacillus Calmette-Guérin-Infected Dendritic Cells Kill Mycobacterial-Infected Monocytes. Journal of Immunology, 2007, 179, 3057-3064.	0.8	56
61	An IL-15 Dependent CD8 T Cell Response to Selected HIV Epitopes is Related to Viral Control in Early-Treated HIV-Infected Subjects. International Journal of Immunopathology and Pharmacology, 2007, 20, 473-485.	2.1	9
62	Mycobacteria and dendritic cell differentiation: Escape or control of immunity. Immunology Letters, 2006, 102, 115-117.	2.5	4
63	Human monocyte-derived dendritic cells differentiated in the presence of IL-2 produce proinflammatory cytokines and prime Th1 immune response. Journal of Leukocyte Biology, 2006, 80, 555-562.	3.3	36
64	Complementary Function of Î ³ δT-Lymphocytes and Dendritic Cells in the Response to Isopentenyl-Pyrophosphate and Lipopolysaccharide Antigens. Journal of Clinical Immunology, 2005, 25, 230-237.	3.8	38
65	Non-Pathogenic Mycobacterium smegmatis Induces the Differentiation of Human Monocytes Directly into Fully Mature Dendritic Cells. Journal of Clinical Immunology, 2005, 25, 365-375.	3.8	15
66	Bacterial Infections Promote T Cell Recognition of Self-Glycolipids. Immunity, 2005, 22, 763-772.	14.3	109
67	Dendritic cells derived from BCG-infected precursors induce Th2-like immune response. Journal of Leukocyte Biology, 2004, 76, 827-834.	3.3	38
68	Cyclic Adenosine 5′-Monophosphate and Calcium Induce CD152 (CTLA-4) Up-Regulation in Resting CD4+ T Lymphocytes. Journal of Immunology, 2002, 169, 6231-6235.	0.8	44
69	Human Macrophage Gamma Interferon Decreases Gene Expression but Not Replication of Mycobacterium tuberculosis : Analysis of the Host-Pathogen Reciprocal Influence on Transcription in a Comparison of Strains H37Rv and CMT97. Infection and Immunity, 2001, 69, 7262-7270.	2.2	30