Maria Elena Cucciolito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9557705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvent-free direct esterification of acrylic acid with 2-ethylhexyl alcohol using simple Zn(II) catalysts. Inorganica Chimica Acta, 2022, 534, 120821.	2.4	3
2	Parts-Per-Million (Salen)Fe(III) Homogeneous Catalysts for the Production of Biodiesel from Waste Cooking Oils. Catalysis Letters, 2022, 152, 3785-3794.	2.6	2
3	Oxidative Addition of αâ€Glycosyl Halides to a Platinum(0) Olefin Complex: Stereochemistry of Ptâ^'C Bond Formation. European Journal of Inorganic Chemistry, 2021, 2021, 534-539.	2.0	2
4	A hydrophilic olefin Pt(0) complex containing a glucoconjugated 2-iminopyridine ligand: Synthesis, characterization, stereochemistry and biological activity. Inorganica Chimica Acta, 2021, 516, 120092.	2.4	8
5	Homogeneous Catalysis and Heterogeneous Recycling: A Simple Zn(II) Catalyst for Green Fatty Acid Esterification. ACS Sustainable Chemistry and Engineering, 2021, 9, 6001-6011.	6.7	21
6	Square-Planar vs. Trigonal Bipyramidal Geometry in Pt(II) Complexes Containing Triazole-Based Glucose Ligands as Potential Anticancer Agents. International Journal of Molecular Sciences, 2021, 22, 8704.	4.1	8
7	Fiveâ€Coordinate Platinum(II) Compounds as Potential Anticancer Agents. European Journal of Inorganic Chemistry, 2020, 2020, 918-929.	2.0	24
8	Emerging catalysis in biomass valorisation: simple Zn(II) catalysts for fatty acids esterification and transesterification. ChemCatChem, 2020, 12, 5858-5879.	3.7	22
9	Pt(II) versus Pt(IV) in Carbene Glycoconjugate Antitumor Agents: Minimal Structural Variations and Great Performance Changes. Inorganic Chemistry, 2020, 59, 4002-4014.	4.0	32
10	Direct and Solventâ€Free Oxidative Cleavage of Double Bonds in Highâ€Oleic Vegetable Oils. ChemistrySelect, 2020, 5, 1396-1400.	1.5	23
11	Solvent-free transesterification of methyl levulinate and esterification of levulinic acid catalyzed by a homogeneous iron(III) dimer complex. Molecular Catalysis, 2020, 483, 110777.	2.0	23
12	Reaction with Proteins of a Five-Coordinate Platinum(II) Compound. International Journal of Molecular Sciences, 2019, 20, 520.	4.1	6
13	<i>Cynara cardunculus</i> Biomass Recovery: An Eco-Sustainable, Nonedible Resource of Vegetable Oil for the Production of Poly(lactic acid) Bioplasticizers. ACS Sustainable Chemistry and Engineering, 2019, 7, 4069-4077.	6.7	36
14	A highly efficient and selective antitumor agent based on a glucoconjugated carbene platinum(<scp>ii</scp>) complex. Dalton Transactions, 2019, 48, 7794-7800.	3.3	28
15	Pyridine Ruthenium(III) complexes entrapped in liposomes with enhanced cytotoxic properties in PC-3 prostate cancer cells. Journal of Drug Delivery Science and Technology, 2019, 51, 552-558.	3.0	11
16	A Sustainable Process for the Production of Varnishes Based on Pelargonic Acid Esters. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 443-451.	1.9	23
17	Iron(III) Complexes for Highly Efficient and Sustainable Ketalization of Glycerol: A Combined Experimental and Theoretical Study. ACS Omega, 2019, 4, 688-698.	3.5	43
18	Five-Coordinate Platinum(II) Compounds Containing Sugar Ligands: Synthesis, Characterization, Cytotoxic Activity, and Interaction with Biological Macromolecules. Inorganic Chemistry, 2018, 57, 3133-3143.	4.0	28

#	Article	IF	CITATIONS
19	<i>C</i> -Glycosylation in platinum-based agents: a viable strategy to improve cytotoxicity and selectivity. Inorganic Chemistry Frontiers, 2018, 5, 2921-2933.	6.0	20
20	Iron(III) Complexes with Cross-Bridged Cyclams: Synthesis and Use in Alcohol and Water Oxidation Catalysis. European Journal of Inorganic Chemistry, 2018, 2018, 3304-3311.	2.0	43
21	N,N′-diethyl and N-ethyl,N′-methyl glyoxal-bridged cyclams: synthesis, characterization, and bleaching activities of the corresponding Mn(II) complexes. Transition Metal Chemistry, 2017, 42, 427-433.	1.4	2
22	Oxidative Coupling of Imino, Amide Platinum(II) Complexes Yields Highly Conjugated Blue Dimers. Organometallics, 2017, 36, 384-390.	2.3	15
23	Highly efficient iron(III) molecular catalysts for solketal production. Fuel Processing Technology, 2017, 167, 670-673.	7.2	33
24	Sugarâ€Incorporated Nâ€Heterocyclicâ€Carbeneâ€Containing Gold(I) Complexes: Synthesis, Characterization, and Cytotoxic Evaluation. European Journal of Inorganic Chemistry, 2017, 2017, 4955-4961.	2.0	19
25	Simple Zn(II) Salts as Efficient Catalysts for the Homogeneous Trans-Esterification of Methyl Esters. Catalysis Letters, 2016, 146, 1113-1117.	2.6	6
26	A novel and robust homogeneous supported catalyst for biodiesel production. Fuel, 2016, 171, 1-4.	6.4	26
27	Recognition of Prochiral Sulfides in Fiveâ€Coordinate Pt ^{II} Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 4068-4075.	2.0	11
28	Sustainable Process for Production of Azelaic Acid Through Oxidative Cleavage of Oleic Acid. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1701-1707.	1.9	43
29	Synthesis of diethylcarbonate by ethanolysis of urea: A study on the recoverability and recyclability of new Zn-based heterogeneous catalysts. Applied Catalysis A: General, 2015, 493, 1-7.	4.3	14
30	Mild, Selective, and Efficient Oxidation of Sulfides to Sulfoxides Catalyzed by Mn(Iii)-Salen Complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1021-1028.	1.6	1
31	Strategies for immobilizing homogeneous zinc catalysts in biodiesel production. Catalysis Communications, 2014, 56, 81-85.	3.3	16
32	Hydrophilic Pd ⁰ Complexes Based on Sugars for Efficient Suzuki–Miyaura Coupling in Aqueous Systems. European Journal of Inorganic Chemistry, 2014, 2014, 4199-4208.	2.0	8
33	The elpaN-salen series: multifunctional ligands based on d-glucose for the Mn(III)-catalyzed enantioselective epoxidation of styrenes. Inorganica Chimica Acta, 2013, 405, 288-294.	2.4	9
34	Preparation, structure, and metal coordination of 2-(2-methyl-2,3-dihydro-1H-perimidin-2-yl)benzene-1,3-diol. Tetrahedron Letters, 2013, 54, 1503-1506.	1.4	7
35	Naphthalene-1,8-diamine–2-(pyrimidin-2-yl)-1 <i>H</i> -perimidine (2/1). Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1133-o1134.	0.2	3
36	Shiff base complexes of zinc(II) as catalysts for biodiesel production. Journal of Molecular Catalysis	4.8	20

#	Article	IF	CITATIONS
37	Synthesis and Reactivity of Squareâ€Planar Pt II ‑'Ε 1 â€Hydrocarbyl Complexes Containing cis oordinated Olefin or Alkyne. European Journal of Inorganic Chemistry, 2012, 2012, 599-609.	2.0	3
38	Threeâ€Coordinate [Pt(N , N ′â€chelate)(η 2 â€olefin)] Complexes: Synthesis, Properties and Reactions with Electrophiles. European Journal of Inorganic Chemistry, 2011, 2011, 457-469.	2.0	14
39	Hydrophilic ligands derived from glucose: Synthesis, characterization and in vitro cytotoxic activity on cancer cells of Pt(II) complexes. Inorganica Chimica Acta, 2010, 363, 741-747.	2.4	16
40	Catalytic Hydroalkylation of Olefins by Stabilized Carbon Nucleophiles Promoted by Dicationic Platinum(II) and Palladium(II) Complexes. Organometallics, 2010, 29, 5878-5884.	2.3	21
41	Intermolecular Cross-coupling Between η2-Olefin and η1-Allyl Ligands in Cationic Platinum(II) and Palladium(II) Complexes. Organometallics, 2008, 27, 6360-6363.	2.3	13
42	Reactivity of cis-{PtII(Ar)(alkyne)} Fragments (Ar = aryl): A Domino-Formation of Indenes. Organometallics, 2008, 27, 1351-1353.	2.3	9
43	Catalytic Hydroarylation of Olefins Promoted by Dicationic Platinum(II) and Palladium(II) Complexes. The Interplay of Câ^'C Bond Formation and Mâ^'C Bond Cleavage. Organometallics, 2007, 26, 5216-5223.	2.3	39
44	O,N,O′-tridentate ligands derived from carbohydrates in the V(IV)-promoted asymmetric oxidation of thioanisole. Journal of Molecular Catalysis A, 2005, 236, 176-181.	4.8	47
45	Catalytic Coupling of Ethylene and Internal Olefins by Dicationic Palladium(II) and Platinum(II) Complexes:Â Switching from Hydrovinylation to Cyclopropane Ring Formation. Organometallics, 2005, 24, 3359-3361.	2.3	48
46	Chiral Diamineâ^'Silver(I)â^'Alkene Complexes:  A Quantum Chemical and NMR Study. Organometallics, 2005, 24, 3737-3745.	2.3	10
47	Chiral Recognition in Silver(I) Olefin Complexes with Chiral Diamines. Resolution of Racemic Alkenes and NMR Discrimination of Enantiomers. Organometallics, 2004, 23, 15-17.	2.3	22
48	Coordination modes of cis-P,P′-diphenyl-1,4-diphospha-cyclohexane to metal ions of Groups 9 and 10. Inorganica Chimica Acta, 2003, 343, 209-216.	2.4	17
49	Preparation and catalytic properties of palladium(0) and rhodium(I) complexes containing new chiral P,N-ligands derived from carbohydrates. Inorganica Chimica Acta, 2003, 353, 238-244.	2.4	26
50	A hydrophilic chiral diamine from d-glucose in the Rh(I) catalysed asymmetric hydrogenation of acetophenone. Inorganic Chemistry Communication, 2003, 6, 1081-1085.	3.9	10
51	Coordinated Olefins as Incipient Carbocations:Â Catalytic Codimerization of Ethylene and Internal Olefins by a Dicationic Pt(II)â^'Ethylene Complex. Journal of the American Chemical Society, 2002, 124, 9038-9039.	13.7	85
52	Novel chiral diimines and diamines derived from sugars in copper-catalysed asymmetric cyclopropanation. Tetrahedron: Asymmetry, 2001, 12, 2467-2471.	1.8	33
53	Stereoselectivity and Chiral Recognition in Copper(<scp>I</scp>) Olefin Complexes with a Chiral Diamine. Chemistry - A European Journal, 2000, 6, 1127-1139.	3.3	18
54	Stereoselectivity and Chiral Recognition in Copper(I) Olefin Complexes with a Chiral Diamine. Chemistry - A European Journal, 2000, 6, 1127-1139.	3.3	29

#	Article	IF	CITATIONS
55	First Coordinatively Saturated Carbene Complexes of Platinum(II):  Synthesis, Structure, and Reactivity. Organometallics, 1999, 18, 3482-3489.	2.3	23
56	Regiochemical control of a Pt-promoted alkylation of the phenyl ring. Journal of the Chemical Society Dalton Transactions, 1998, , 1675-1678.	1.1	11
57	Stability and reactivity of the cis-PtIIR(alkyne) fragment (Râ€=â€alkyl): an unprecedented rearrangement to form the PtII(η3-allyl) moiety. Journal of the Chemical Society Dalton Transactions, 1997, , 1351-1354.	1.1	10
58	Cationic platinum(II) - or palladium(II)-carbyl complexes and unsaturated substrates: a facile way to C-C bond formation. Journal of Organometallic Chemistry, 1995, 493, 1-11.	1.8	47
59	Bi- and trinuclear cationic complexes involving bonds between mercury and five-coordinate platinum(II). Molecular structure of [{Pt(2,9-dimethyl-1,10-phenanthroline)-(Z-MeO2CCH =) Tj ETQq1 1 0.784314	l ng8T /O∖	ver lo ck 10 T
60	Synthesis, Structural Characterization, and Reactions of [PdPhCl(2,9-Me2-1,10-phenanthroline)] with Olefins. Organometallics, 1995, 14, 5410-5414.	2.3	17
61	Chiral Recognition in Platinum Complexes of 1,2-Diphenyl-N,N'-bis[(2,4,6-trimethylphenyl)methyl]-1,2-diaminoethane. Stereoselective Coordination of Olefins and Molecular Structure of a Trigonal Bipyramidal Adduct. Organometallics, 1995, 14, 1152-1160.	2.3	7
62	Resolution of Allylic Alcohols via Copper(I) Complexes with a Chiral Diamine. Tetrahedron Letters, 1994, 35, 169-170.	1.4	19
63	Trigonal-bipyramidal co-ordinatively saturated platinum(II) olefin complexes bearing an organomercury fragment in axial position. Journal of the Chemical Society Dalton Transactions, 1993, , 3421.	1.1	26
64	Effects of phenanthroline type ligands on the dynamic processes of (.eta.3-allyl)palladium complexes. Molecular structure of (2,9-dimethyl-1,10-phenanthroline)[(1,2,3eta.)-3-methyl-2-butenyl]chloropalladium. Organometallics, 1993, 12, 4940-4948.	2.3	121
65	Selective stabilization of the anti isomer of (.eta.3-allyl)palladium and -platinum complexes. Organometallics, 1992, 11, 3954-3964.	2.3	105
66	On the stabilization of five-coordinate trigonal-bipyramidal palladium(II) species. Crystal structure of (2,9-dimethyl-1,10-phenanthroline)methylchloropalladium(II). Journal of Organometallic Chemistry, 1991, 403, 269-277.	1.8	44
67	Synthesis and characterization of five-coordinate olefin complexes of palladium(II). Molecular structure of the acetone solvate of (2,9-dimethyl-1,10-phenanthroline)(maleic) Tj ETQq1 1 0.784314 rgBT /Overlo	oc k.3 0 Tf :	507 2 57 Td (a
68	Five-coordinate olefin complexes of platinum(II) containing .sigmabonded carbon ligands. Coordination environment and stability. Organometallics, 1989, 8, 1180-1187.	2.3	66
69	Halo complexes of gold(I) containing glycoconjugate carbene ligands: synthesis, characterization, cytotoxicity and interaction with protein and DNA model systems. Dalton Transactions, 0, , .	3.3	6