
Pier Lorenzo Puri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9557657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature, 2013, 494, 105-110.	27.8	474
2	p38 and Extracellular Signal-Regulated Kinases Regulate the Myogenic Program at Multiple Steps. Molecular and Cellular Biology, 2000, 20, 3951-3964.	2.3	419
3	Differential Roles of p300 and PCAF Acetyltransferases in Muscle Differentiation. Molecular Cell, 1997, 1, 35-45.	9.7	398
4	p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nature Genetics, 2004, 36, 738-743.	21.4	364
5	Regulation of Histone Acetyltransferases p300 and PCAF by the bHLH Protein Twist and Adenoviral Oncoprotein E1A. Cell, 1999, 96, 405-413.	28.9	350
6	TNF/p38α/Polycomb Signaling to Pax7 Locus in Satellite Cells Links Inflammation to the Epigenetic Control of Muscle Regeneration. Cell Stem Cell, 2010, 7, 455-469.	11.1	346
7	Acetylation of MyoD Directed by PCAF Is Necessary for the Execution of the Muscle Program. Molecular Cell, 1999, 4, 725-734.	9.7	334
8	STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nature Medicine, 2014, 20, 1182-1186.	30.7	301
9	Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. Journal of Cellular Physiology, 2000, 185, 155-173.	4.1	262
10	A Systems Approach Reveals that the Myogenesis Genome Network Is Regulated by the Transcriptional Repressor RP58. Developmental Cell, 2009, 17, 836-848.	7.0	259
11	HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19183-19187.	7.1	234
12	Deacetylase Inhibitors Increase Muscle Cell Size by Promoting Myoblast Recruitment and Fusion through Induction of Follistatin. Developmental Cell, 2004, 6, 673-684.	7.0	214
13	p38-Dependent Phosphorylation of the mRNA Decay-Promoting Factor KSRP Controls the Stability of Select Myogenic Transcripts. Molecular Cell, 2005, 20, 891-903.	9.7	212
14	Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Molecular Medicine, 2013, 5, 626-639.	6.9	201
15	Class I Histone Deacetylases Sequentially Interact with MyoD and pRb during Skeletal Myogenesis. Molecular Cell, 2001, 8, 885-897.	9.7	197
16	Denervation-activated STAT3–IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nature Cell Biology, 2018, 20, 917-927.	10.3	189
17	Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO Journal, 2012, 31, 301-316.	7.8	185
18	Functional Interdependence at the Chromatin Level between the MKK6/p38 and IGF1/PI3K/AKT Pathways during Muscle Differentiation. Molecular Cell, 2007, 28, 200-213.	9.7	174

#	Article	IF	CITATIONS
19	Histological effects of givinostat in boys with Duchenne muscular dystrophy. Neuromuscular Disorders, 2016, 26, 643-649.	0.6	144
20	Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy. Nature Communications, 2018, 9, 3670.	12.8	137
21	HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes and Development, 2014, 28, 841-857.	5.9	132
22	Critical Role Played by Cyclin D3 in the MyoD-Mediated Arrest of Cell Cycle during Myoblast Differentiation. Molecular and Cellular Biology, 1999, 19, 5203-5217.	2.3	129
23	Endothelial activation by angiotensin II through NFκB and p38 pathways: Involvement of NFκBâ€inducible kinase (NIK), free oxygen radicals, and selective inhibition by aspirin. Journal of Cellular Physiology, 2003, 195, 402-410.	4.1	127
24	Epigenetic Reprogramming of Human Embryonic Stem Cells into Skeletal Muscle Cells and Generation of Contractile Myospheres. Cell Reports, 2013, 3, 661-670.	6.4	116
25	Preclinical Studies in the mdx Mouse Model of Duchenne Muscular Dystrophy with the Histone Deacetylase Inhibitor Givinostat. Molecular Medicine, 2013, 19, 79-87.	4.4	116
26	Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7757-7762.	7.1	114
27	Reactive Oxygen Intermediates Mediate Angiotensin II-induced c-Jun•c-Fos Heterodimer DNA Binding Activity and Proliferative Hypertrophic Responses in Myogenic Cells. Journal of Biological Chemistry, 1995, 270, 22129-22134.	3.4	113
28	A myogenic differentiation checkpoint activated by genotoxic stress. Nature Genetics, 2002, 32, 585-593.	21.4	108
29	Phosphorylation-Dependent Degradation of p300 by Doxorubicin-Activated p38 Mitogen-Activated Protein Kinase in Cardiac Cells. Molecular and Cellular Biology, 2005, 25, 2673-2687.	2.3	108
30	Activation of MyoD-dependent transcription by cdk9/cyclin T2. Oncogene, 2002, 21, 4137-4148.	5.9	106
31	The epigenetic network regulating muscle development and regeneration. Journal of Cellular Physiology, 2006, 207, 1-11.	4.1	103
32	Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration. Trends in Cell Biology, 2009, 19, 286-294.	7.9	87
33	A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cellular and Molecular Life Sciences, 2013, 70, 2015-2029.	5.4	85
34	Histone Deacetylase Inhibitors in the Treatment of Muscular Dystrophies: Epigenetic Drugs for Genetic Diseases. Molecular Medicine, 2011, 17, 457-465.	4.4	75
35	Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy. FASEB Journal, 2009, 23, 2131-2141.	0.5	69
36	Transcription Factor-Directed Re-wiring of Chromatin Architecture for Somatic Cell Nuclear Reprogramming toward trans-Differentiation. Molecular Cell, 2019, 76, 453-472.e8.	9.7	67

#	Article	IF	CITATIONS
37	Differentiation-Induced Radioresistance in Muscle Cells. Molecular and Cellular Biology, 2004, 24, 6350-6361.	2.3	66
38	Id genes are essential for early heart formation. Genes and Development, 2017, 31, 1325-1338.	5.9	64
39	The ER-Bound RING Finger Protein 5 (RNF5/RMA1) Causes Degenerative Myopathy in Transgenic Mice and Is Deregulated in Inclusion Body Myositis. PLoS ONE, 2008, 3, e1609.	2.5	57
40	Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment. Genes and Development, 2013, 27, 2332-2344.	5.9	54
41	Human skeletal muscle CD90+ fibro-adipogenic progenitors are associated with muscle degeneration in type 2 diabetic patients. Cell Metabolism, 2021, 33, 2201-2214.e10.	16.2	54
42	MyoD recruits the cdk9/cyclin T2 complex on Myogenic-genes regulatory regions. Journal of Cellular Physiology, 2006, 206, 807-813.	4.1	51
43	BAF60 A, B, and Cs of muscle determination and renewal. Genes and Development, 2012, 26, 2673-2683.	5.9	50
44	Intergenerational inheritance of high fat diet-induced cardiac lipotoxicity in Drosophila. Nature Communications, 2019, 10, 193.	12.8	49
45	Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Molecular Cell, 2018, 71, 375-388.	9.7	45
46	HDAC inhibitors tune miRNAs in extracellular vesicles of dystrophic muscleâ€resident mesenchymal cells. EMBO Reports, 2020, 21, e50863.	4.5	45
47	MyoD prevents cyclinA/cdk2 containing E2F complexes formation in terminally differentiated myocytes. Oncogene, 1997, 14, 1171-1184.	5.9	43
48	Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy. Nature Communications, 2018, 9, 3950.	12.8	43
49	SIRT1 signaling as potential modulator of skeletal muscle diseases. Current Opinion in Pharmacology, 2012, 12, 372-376.	3.5	41
50	BRD3 and BRD4 BET Bromodomain Proteins Differentially Regulate Skeletal Myogenesis. Scientific Reports, 2017, 7, 6153.	3.3	41
51	Comprehensive RNA-Sequencing Analysis in Serum and Muscle Reveals Novel Small RNA Signatures with Biomarker Potential for DMD. Molecular Therapy - Nucleic Acids, 2018, 13, 1-15.	5.1	41
52	Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression. Seminars in Cell and Developmental Biology, 2005, 16, 596-611.	5.0	39
53	Epigenetic control of skeletal muscle regeneration. FEBS Journal, 2013, 280, 4014-4025.	4.7	38
54	The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration. Nature Communications, 2019, 10, 1796.	12.8	38

#	Article	IF	CITATIONS
55	DNA damage and cellular differentiation: More questions than responses. Journal of Cellular Physiology, 2007, 213, 642-648.	4.1	37
56	Regenerative pharmacology in the treatment of genetic diseases: The paradigm of muscular dystrophy. International Journal of Biochemistry and Cell Biology, 2009, 41, 701-710.	2.8	37
57	SWI/SNF complexes, chromatin remodeling and skeletal myogenesis: It's time to exchange!. Experimental Cell Research, 2010, 316, 3073-3080.	2.6	37
58	Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis. EMBO Reports, 2015, 16, 1037-1050.	4.5	37
59	Macrophages fine tune satellite cell fate in dystrophic skeletal muscle of mdx mice. PLoS Genetics, 2019, 15, e1008408.	3.5	35
60	Binding of CDK9 to TRAF2. Journal of Cellular Biochemistry, 1998, 71, 467-478.	2.6	34
61	Givinostat reduces adverse cardiac remodeling through regulating fibroblasts activation. Cell Death and Disease, 2018, 9, 108.	6.3	34
62	Deacetylase recruitment by the C/H3 domain of the acetyltransferase p300. Oncogene, 2004, 23, 2177-2187.	5.9	33
63	Reversal of Defective Mitochondrial Biogenesis in Limb-Girdle Muscular Dystrophy 2D by Independent Modulation of Histone and PGC-11± Acetylation. Cell Reports, 2016, 17, 3010-3023.	6.4	30
64	Regulation of Muscle Satellite Cell Function in Tissue Homeostasis and Aging. Cell Stem Cell, 2015, 16, 585-587.	11.1	29
65	SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis. Cellular and Molecular Life Sciences, 2016, 73, 3887-3896.	5.4	29
66	Epigenetic drugs in the treatment of skeletal muscle atrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 233-241.	2.5	28
67	Phosphoryl-EZH-ion. Cell Stem Cell, 2011, 8, 262-265.	11.1	27
68	DNA damage signaling mediates the functional antagonism between replicative senescence and terminal muscle differentiation. Genes and Development, 2017, 31, 648-659.	5.9	25
69	Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes reveals constitutive and inducible over-activation of TGFβ-dependent pro-fibrotic signaling. Skeletal Muscle, 2020, 10, 13.	4.2	25
70	A Two-Hit Mechanism for Pre-Mitotic Arrest of Cancer Cell Proliferation by a Polyamide-Alkylator Conjugate. Cell Cycle, 2006, 5, 1537-1548.	2.6	24
71	Coordination of cell cycle, DNA repair and muscle gene expression in myoblasts exposed to genotoxic stress. Cell Cycle, 2011, 10, 2355-2363.	2.6	20
72	Activation of skeletal muscle–resident glial cells upon nerve injury. JCI Insight, 2021, 6, .	5.0	20

#	Article	IF	CITATIONS
73	TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. ELife, 2016, 5, .	6.0	20
74	An evolutionarily acquired genotoxic response discriminates MyoD from Myf5, and differentially regulates hypaxial and epaxial myogenesis. EMBO Reports, 2011, 12, 164-171.	4.5	15
75	Revealing the Therapeutic Potential of Botulinum Neurotoxin Type A in Counteracting Paralysis and Neuropathic Pain in Spinally Injured Mice. Toxins, 2020, 12, 491.	3.4	15
76	"Mix of Mics"- Phenotypic and Biological Heterogeneity of "Multipotent" Muscle Interstitial Cells (MICs). Journal of Stem Cell Research & Therapy, 2012, , .	0.3	15
77	Uncoupling of p21 induction and MyoD activation results in the failure of irreversible cell cycle arrest in doxorubicin-treated myocytes. Journal of Cellular Biochemistry, 1997, 66, 27-36.	2.6	13
78	Myosin Phosphatase Modulates the Cardiac Cell Fate by Regulating the Subcellular Localization of Nkx2.5 in a Wnt/Rho–Associated Protein Kinase–Dependent Pathway. Circulation Research, 2013, 112, 257-266.	4.5	13
79	Lack of PKCÎ, Promotes Regenerative Ability of Muscle Stem Cells in Chronic Muscle Injury. International Journal of Molecular Sciences, 2020, 21, 932.	4.1	13
80	Could we also be regenerative superheroes, like salamanders?. BioEssays, 2016, 38, 917-926.	2.5	10
81	Muscle-relevant genes marked by stable H3K4me2/3 profiles and enriched MyoD binding during myogenic differentiation. PLoS ONE, 2017, 12, e0179464.	2.5	10
82	Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibroâ€adipogenic progenitors. EMBO Reports, 2022, 23, e54721.	4.5	7
83	Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells. Methods in Molecular Biology, 2017, 1556, 191-219.	0.9	6
84	Advanced Methods to Study the Cross Talk Between Fibro-Adipogenic Progenitors and Muscle Stem Cells. Methods in Molecular Biology, 2018, 1687, 231-256.	0.9	6
85	LncRNA <i>EPR</i> -induced METTL7A1 modulates target gene translation. Nucleic Acids Research, 2022, 50, 7608-7622.	14.5	6
86	HDACs and sirtuins: Targets for new pharmacological interventions in human diseases. Pharmacological Research, 2010, 62, 1-2.	7.1	5
87	Switch NFix Developmental Myogenesis. Developmental Cell, 2010, 18, 340-341.	7.0	3
88	Nitric Oxide and Histone Acetylation—Shaping Craniofacial Development. Chemistry and Biology, 2014, 21, 565-566.	6.0	3
89	Fibro-Adipogenic Progenitors: Versatile keepers of skeletal muscle homeostasis, beyond the response to myotrauma. Seminars in Cell and Developmental Biology, 2021, 119, 23-31.	5.0	3
90	Muscles cannot break a NuRDy heart. EMBO Journal, 2016, 35, 1600-1602.	7.8	2

#	Article	IF	CITATIONS
91	MyoD induces ARTD1 and nucleoplasmic poly-ADP-ribosylation during fibroblast to myoblast transdifferentiation. IScience, 2021, 24, 102432.	4.1	2
92	Redox or Death: Checking on Fetal Myogenesis. Developmental Cell, 2014, 29, 373-374.	7.0	1
93	Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. , 2000, 185, 155.		1