
Andreas Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/955753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lightâ€Induced Fragrance Release from 2â€Oxoacetates: Impact of Compound Mixtures on the Efficiency of the Norrish Type II Photoreaction in Solution and in Encapsulation Systems. ChemPhotoChem, 2022, 6, .	3.0	2
2	Design of Stimuliâ€Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Partâ€2): Fragranceâ€Releasing Cleavable Surfactants in Functional Perfumery Applications. Chemistry - A European Journal, 2021, 27, 13468-13476.	3.3	13
3	Design of Stimuliâ€Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Partâ€1): Controlled Hydrolysis of Micellar Amphiphilic Imines in Water. Chemistry - A European Journal, 2021, 27, 13457-13467.	3.3	10
4	Polystyreneâ€Based 2â€Oxoacetates for the Lightâ€Induced Release of Fragrances Under Realistic Application Conditions. Macromolecular Chemistry and Physics, 2020, 221, 2000196.	2.2	6
5	Developing Multi Stimuliâ€Responsive Core/Shell Microcapsules to Control the Release of Volatile Compounds. Macromolecular Materials and Engineering, 2019, 304, 1800599.	3.6	30
6	Photochemistry of 2-Oxoacetates: from Mechanistic Insights to Profragrances and Bursting Capsules. Chimia, 2019, 74, 39.	0.6	7
7	Controlled release of volatile compounds using the Norrish type II reaction. Photochemistry, 2018, , 242-264.	0.2	10
8	Selective Peptide-Mediated Enhanced Deposition of Polymer Fragrance Delivery Systems on Human Hair. ACS Applied Materials & Interfaces, 2017, 9, 24238-24249.	8.0	41
9	Peptideâ€Enhanced Selective Surface Deposition of Polymerâ€Based Fragrance Delivery Systems. Advanced Functional Materials, 2017, 27, 1603843.	14.9	26
10	Profragrance Chemistry as an Interdisciplinary Research Area and Key Technology for Fragrance Delivery. Chimia, 2017, 71, 414.	0.6	18
11	Photolabile acetals as profragrances: the effect of structural modifications on the light-induced release of volatile aldehydes on cotton. Photochemical and Photobiological Sciences, 2016, 15, 1183-1203.	2.9	11
12	Titelbild: Kontrollierte Freisetzung von verkapselten flüchtigen bioaktiven Verbindungen durch Brechen der Kapselwand als Folge einer lichtinduzierten Gasbildung (Angew. Chem. 7/2015). Angewandte Chemie, 2015, 127, 1999-1999.	2.0	0
13	Controlled Release of Encapsulated Bioactive Volatiles by Rupture of the Capsule Wall through the Lightâ€Induced Generation of a Gas. Angewandte Chemie - International Edition, 2015, 54, 2275-2279.	13.8	39
14	"Old―chemistry in a new context: photocleavable 2-oxoacetate-containing latex dispersions and core–shell microcapsules for the controlled release of volatile compounds. Polymer Chemistry, 2015, 6, 3224-3235.	3.9	6
15	Functionalized cellulose nanocrystals as nanocarriers for sustained fragrance release. Polymer Chemistry, 2015, 6, 6553-6562.	3.9	21
16	Thioether Profragrances: Parameters Influencing the Performance of Precursorâ€Based Fragrance Delivery in Functional Perfumery. Chemistry and Biodiversity, 2014, 11, 1700-1733.	2.1	10
17	Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chemical Society Reviews, 2014, 43, 1899-1933.	38.1	311
18	Controlled fragrance release from galactose-based pro-fragrances. RSC Advances, 2014, 4, 50882-50890.	3.6	12

ANDREAS HERRMANN

#	Article	IF	CITATIONS
19	Controlled Release of Damascone from Poly(styrene-co-maleic anhydride)-based Bioconjugates in Functional Perfumery. Polymers, 2013, 5, 234-253.	4.5	9
20	Slow release of fragrance aldehydes and ketones in functional perfumery from dynamic mixtures generated with <i>N</i> â€heteroarylmethylâ€substituted secondary diamines. Flavour and Fragrance Journal, 2013, 28, 280-293.	2.6	20
21	Using photolabile protecting groups for the controlled release of bioactive volatiles. Photochemical and Photobiological Sciences, 2012, 11, 446-459.	2.9	59
22	Preparation of Imidazolidinâ€4â€ones and Their Evaluation as Hydrolytically Cleavable Precursors for the Slow Release of Bioactive Volatile Carbonyl Derivatives. European Journal of Organic Chemistry, 2012, 2012, 2837-2854.	2.4	17
23	Stabilized Hemiacetal Complexes as Precursors for the Controlled Release of Bioactive Volatile Alcohols. Chemistry and Biodiversity, 2012, 9, 689-701.	2.1	18
24	Dynamic Mixtures: Challenges and Opportunities for the Amplification and Sensing of Scents. Chemistry - A European Journal, 2012, 18, 8568-8577.	3.3	46
25	Release of bioactive volatiles from supramolecular hydrogels: influence of reversible acylhydrazone formation on gel stability and volatile compound evaporation. Organic and Biomolecular Chemistry, 2011, 9, 2906.	2.8	49
26	Synthesis of hydroxypropyl cellulose derivatives modified with amphiphilic diblock copolymer side-chains for the slow release of volatile molecules. Polymer Chemistry, 2011, 2, 2093.	3.9	24
27	Reversible Aminal Formation: Controlling the Evaporation of Bioactive Volatiles by Dynamic Combinatorial/Covalent Chemistry. European Journal of Organic Chemistry, 2011, 2011, 681-695.	2.4	70
28	Size isn't Everything! Parameters Influencing the Release of Volatiles from Macromolecular Bioconjugates. Chimia, 2010, 64, 669.	0.6	0
29	Influence of the Backbone Structure on the Release of Bioactive Volatiles from Maleic Acid-Based Polymer Conjugates. Bioconjugate Chemistry, 2010, 21, 2000-2012.	3.6	15
30	Reversible formation of aminals: a new strategy to control the release of bioactive volatiles from dynamic mixtures. Chemical Communications, 2010, 46, 3125.	4.1	54
31	Parameters Influencing the Release of Tertiary Alcohols from the Surface of "Spherical―Dendrimers and "Linear―Stylomers by Neighbouringâ€Groupâ€Assisted Hydrolysis of 2â€Carbamoylbenzoates. Chemist - A European Journal, 2009, 15, 2846-2860.	ry3.3	21
32	Electricâ€Field Triggered Controlled Release of Bioactive Volatiles from Imineâ€Based Liquid Crystalline Phases. Chemistry - A European Journal, 2009, 15, 117-124.	3.3	53
33	Dynamic mixtures and combinatorial libraries: imines as probes for molecular evolution at the interface between chemistry and biology. Organic and Biomolecular Chemistry, 2009, 7, 3195.	2.8	87
34	Controlled Release of Volatile Secondary and Tertiary Alcohols by Neighboring Group Participation: Stepwise Cyclization and Reâ€Opening of 2,2′â€Bis(carbamoyl)dibenzoates at Neutral pH. Chemistry and Biodiversity, 2008, 5, 2621-2639.	2.1	5
35	Investigation of the Release of Bioactive Volatiles from Amphiphilic Multiarm Star-Block Copolymers by Thermogravimetry and Dynamic Headspace Analysis. Macromolecules, 2008, 41, 7079-7089.	4.8	27
36	Controlled Light-Induced Release of Volatile Aldehydes and Ketones by Photofragmentation of 2-Oxo-(2-phenyl)acetates. Chimia, 2007, 61, 661.	0.6	23

#	Article	IF	CITATIONS
37	NMR Diffusion and Relaxation Studies of the Encapsulation of Fragrances by Amphiphilic Multiarm Star Block Copolymers. Macromolecules, 2007, 40, 5372-5378.	4.8	27
38	Controlled Release of Volatiles under Mild Reaction Conditions: From Nature to Everyday Products. Angewandte Chemie - International Edition, 2007, 46, 5836-5863.	13.8	165
39	Cover Picture: Controlled Release of Volatiles under Mild Reaction Conditions: From Nature to Everyday Products (Angew. Chem. Int. Ed. 31/2007). Angewandte Chemie - International Edition, 2007, 46, 5807-5807.	13.8	1
40	Controlled Release of Volatile Aldehydes and Ketones from Dynamic Mixtures Generated by Reversible Hydrazone Formation. Helvetica Chimica Acta, 2007, 90, 2281-2314.	1.6	64
41	Amphiphilic Multi-Arm Star-Block Copolymers for Encapsulation of Fragrance Molecules. Macromolecular Chemistry and Physics, 2007, 208, 131-145.	2.2	50
42	Controlled release of volatile aldehydes and ketones by reversible hydrazone formation – "classical― profragrances are getting dynamic. Chemical Communications, 2006, , 2965-2967.	4.1	79
43	Water-Soluble, Unimolecular Containers Based on Amphiphilic Multiarm Star Block Copolymers. Macromolecules, 2006, 39, 4507-4516.	4.8	154
44	Light-induced controlled release of fragrance aldehydes from 1-alkoxy-9,10-anthraquinones for applications in functional perfumery. Flavour and Fragrance Journal, 2006, 21, 400-409.	2.6	18
45	Amphiphilic Polymethacrylate- and Polystyrene-Based Chemical Delivery Systems for Damascones. Helvetica Chimica Acta, 2005, 88, 3089-3108.	1.6	21
46	Controlled Release of Perfumery Alcohols by Neighboring-Group Participation. Comparison of the Rate Constants for the Alkaline Hydrolysis of 2-Acyl-, 2-(Hydroxymethyl)-, and 2-Carbamoylbenzoates. Helvetica Chimica Acta, 2003, 86, 2871-2899.	1.6	26
47	Controlled Stepwise Release of Fragrance Alcohols from Dendrimer-Based 2-Carbamoylbenzoates by Neighbouring Group Participation. European Journal of Organic Chemistry, 2003, 2003, 967-971.	2.4	19
48	Controlled Release of Perfumery Alcohols by Neighboring-Group Participation. Comparison of the Rate Constants for the Alkaline Hydrolysis of 2-Acyl-, 2-(Hydroxymethyl)-, and 2-Carbamoylbenzoates ChemInform, 2003, 34, no.	0.0	1
49	Light induced controlled release of fragrances by Norrish type II photofragmentation of alkyl phenyl ketonesElectronic supplementary information (ESI) available: spectroscopic data for intermediate compounds. See http://www.rsc.org/suppdata/pp/b2/b207918f/. Photochemical and Photobiological Sciences. 2002, 1. 907-919.	2.9	38
50	Controlled release of perfumery alcohols by alkaline hydrolysis of 2-formyl- and 2-acetylbenzoates and their corresponding phthalides. Perkin Transactions II RSC, 2001, , 438-440.	1.1	11
51	Controlled Release of Perfumery Aldehydes and Ketones by Norrish Type-II Photofragmentation of -Keto Esters in Undegassed Solution. Helvetica Chimica Acta, 2000, 83, 1645-1671.	1.6	61
52	Dynamic headspace analysis of the light-induced controlled release of perfumery aldehydes and ketones from ?-keto esters in bodycare and household applications. Flavour and Fragrance Journal, 2000, 15, 415-420.	2.6	31
53	Achiral and Chiral Higher Adducts of C70 byBingel Cyclopropanation. Helvetica Chimica Acta, 1999, 82, 261-289.	1.6	32
54	Chemistry of C84: Separation of Three Constitutional Isomers and Optical Resolution ofD2-C84 by Using the "Bingel-Retro-Bingel―Strategy. Angewandte Chemie - International Edition, 1999, 38, 1613-1617.	13.8	96

#	Article	IF	CITATIONS
55	Preparation of Enantiomerically Pure C76 with a General Electrochemical Method for the Removal of Di(alkoxycarbonyl)methano Bridges from Methanofullerenes: The Retro-Bingel Reaction. Angewandte Chemie - International Edition, 1998, 37, 1919-1922.	13.8	118
56	Redox Characteristics of Covalent Derivatives of the Higher Fullerenes C70, C76, and C78. Journal of the American Chemical Society, 1998, 120, 7860-7868.	13.7	97
57	Synthesis, separation and characterisation of the first pure multiple adducts of C2v- and D3-C78. Journal of the Chemical Society Perkin Transactions II, 1997, , 1679-1684.	0.9	12
58	Configurational Description of Chiral Fullerenes and Fullerene Derivatives with a Chiral Functionalization Pattern. Helvetica Chimica Acta, 1997, 80, 183-199.	1.6	75
59	The Covalent Chemistry of Higher Fullerenes: C70 and Beyond. Angewandte Chemie International Edition in English, 1997, 36, 2268-2280.	4.4	120
60	Die kovalente Chemie der höheren Fullerene: C ₇₀ und jenseits davon. Angewandte Chemie, 1997, 109, 2362-2374.	2.0	42
61	Methanofullerene Molecular Scaffolding: Towards C60-substituted poly(triacetylenes) and expanded radialenes, preparation of a C60-C70 hybrid derivative, and a novel macrocyclization reaction. Helvetica Chimica Acta, 1997, 80, 293-316.	1.6	97
62	Synthesis, Separation, and Characterization of Optically Pure C76 Mono-Adducts. Helvetica Chimica Acta, 1996, 79, 1741-1756.	1.6	38
63	Synthesis of a Fullerene[60] Cryptate and Systematic Langmuirâ€Blodgett and Thinâ€Film Investigations of Amphiphilic Fullerene Derivatives. Chemistry - A European Journal, 1995, 1, 243-251.	3.3	94
64	The X-Ray Crystal Structures of a 1,9- and a 7,8-Diels-Alder monoadduct of C70. Helvetica Chimica Acta, 1995, 78, 344-354.	1.6	50
65	Multiple Cyclopropanations of C70. Synthesis and characterization of bis-, tris-, and tetrakis-adducts and chiroptical properties of bis-adducts with chiral addends, including a recommendation for the configurational description of fullerene derivatives w. Helvetica Chimica Acta, 1995, 78, 1673-1704.	1.6	86
66	Chemistry of the Higher Fullerenes: Preparative isolation of C76by HPLC and synthesis, separation, and characterization ofDiels-Aldermonoadducts of C70and C76. Helvetica Chimica Acta, 1994, 77, 1689-1706.	1.6	110
67	Synthesis of a Fullerene Derivative of Benzo[18]crown-6 byDiels-Alder Reaction: Complexation Ability, Amphiphilic Properties, and X-Ray Crystal Structure of a Dimethoxy-1,9-(methano[1,2]benzenomethano)fullerene[60] Benzene Clathrate. Helvetica Chimica Acta, 1993, 76, 2445-2453	1.6	181