Christer S Ejsing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9557214/publications.pdf Version: 2024-02-01

CHDISTED S FISING

#	ARTICLE	IF	CITATIONS
1	Silencing of ceramide synthase 2 in hepatocytes modulates plasma ceramide biomarkers predictive of cardiovascular death. Molecular Therapy, 2022, 30, 1661-1674.	8.2	9
2	Brain lipidomics and neurodevelopmental outcomes in intrauterine growth restricted piglets fed dairy or vegetable fat diets. Scientific Reports, 2022, 12, 3303.	3.3	3
3	Molecular species selectivity of lipid transport creates a mitochondrial sink for diâ€unsaturated phospholipids. EMBO Journal, 2022, 41, e106837.	7.8	12
4	Dairy-Derived Emulsifiers in Infant Formula Show Marginal Effects on the Plasma Lipid Profile and Brain Structure in Preterm Piglets Relative to Soy Lecithin. Nutrients, 2021, 13, 718.	4.1	7
5	Lipid molecular timeline profiling reveals diurnal crosstalk between the liver and circulation. Cell Reports, 2021, 34, 108710.	6.4	28
6	Adipocyte-like signature in ovarian cancer minimal residual disease identifies metabolic vulnerabilities of tumor initiating cells. JCI Insight, 2021, 6, .	5.0	3
7	Quality control requirements for the correct annotation of lipidomics data. Nature Communications, 2021, 12, 4771.	12.8	54
8	Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry. Journal of Lipid Research, 2021, 62, 100050.	4.2	37
9	Adipose MDM2 regulates systemic insulin sensitivity. Scientific Reports, 2021, 11, 21839.	3.3	7
10	LAMTOR/Ragulator regulates lipid metabolism in macrophages and foam cell differentiation. FEBS Letters, 2020, 594, 31-42.	2.8	7
11	Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. Journal of Lipid Research, 2020, 61, 1539-1555.	4.2	372
12	Phosphoproteomic Analysis across the Yeast Life Cycle Reveals Control of Fatty Acyl Chain Length by Phosphorylation of the Fatty Acid Synthase Complex. Cell Reports, 2020, 32, 108024.	6.4	14
13	Simple Targeted Assays for Metabolic Pathways and Signaling: A Powerful Tool for Targeted Proteomics. Analytical Chemistry, 2020, 92, 13672-13676.	6.5	1
14	Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae. PLoS Genetics, 2020, 16, e1008745.	3.5	18
15	A Simple and Direct Assay for Monitoring Fatty Acid Synthase Activity and Product-Specificity by High-Resolution Mass Spectrometry. Biomolecules, 2020, 10, 118.	4.0	9
16	LipidCreator workbench to probe the lipidomic landscape. Nature Communications, 2020, 11, 2057.	12.8	58
17	Title is missing!. , 2020, 16, e1008745.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008745.		0
20	MIGA2 Links Mitochondria, the ER, and Lipid Droplets and Promotes De Novo Lipogenesis in Adipocytes. Molecular Cell, 2019, 76, 811-825.e14.	9.7	136
21	Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis. Microbial Cell Factories, 2019, 18, 49.	4.0	20
22	Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Analytical Chemistry, 2019, 91, 3459-3466.	6.5	74
23	Total Fatty Acid Analysis of Human Blood Samples in One Minute by High-Resolution Mass Spectrometry. Biomolecules, 2019, 9, 7.	4.0	24
24	Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy. Journal of Cell Science, 2018, 131, .	2.0	26
25	Niemann-Pick C2 protein regulates sterol transport between plasma membrane and late endosomes in human fibroblasts. Chemistry and Physics of Lipids, 2018, 213, 48-61.	3.2	19
26	Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis. Journal of the American Society for Mass Spectrometry, 2018, 29, 34-41.	2.8	19
27	Regulation of lipid droplets by metabolically controlled Ldo isoforms. Journal of Cell Biology, 2018, 217, 127-138.	5.2	86
28	Discovery of a Potent Thiazolidine Free Fatty Acid Receptor 2 Agonist with Favorable Pharmacokinetic Properties. Journal of Medicinal Chemistry, 2018, 61, 9534-9550.	6.4	29
29	Automated, parallel mass spectrometry imaging and structural identification of lipids. Nature Methods, 2018, 15, 515-518.	19.0	158
30	Seipin and the membrane-shaping protein Pex30 cooperate in organelle budding from the endoplasmic reticulum. Nature Communications, 2018, 9, 2939.	12.8	107
31	Reporting of lipidomics data should be standardized. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 747-751.	2.4	77
32	Pex35 is a regulator of peroxisome abundance. Journal of Cell Science, 2017, 130, 791-804.	2.0	34
33	Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C.Âelegans. Cell Systems, 2017, 5, 38-52.e4.	6.2	52
34	Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 145-155.	2.4	12
35	Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS ONE, 2017, 12, e0188394.	2.5	84
36	Seipin is required for converting nascent to mature lipid droplets. ELife, 2016, 5, .	6.0	292

#	Article	IF	CITATIONS
37	Functions of Ceramide Synthase Paralogs YPR114w and YJR116w of Saccharomyces cerevisiae. PLoS ONE, 2016, 11, e0145831.	2.5	2
38	Mga2 Transcription Factor Regulates an Oxygen-responsive Lipid Homeostasis Pathway in Fission Yeast. Journal of Biological Chemistry, 2016, 291, 12171-12183.	3.4	37
39	Structural characterization of suppressor lipids by high-resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 2215-2227.	1.5	3
40	Homeoviscous Adaptation and the Regulation of Membrane Lipids. Journal of Molecular Biology, 2016, 428, 4776-4791.	4.2	301
41	Discovery of a Potent Free Fatty Acid 1 Receptor Agonist with Low Lipophilicity, Low Polar Surface Area, and Robust in Vivo Efficacy. Journal of Medicinal Chemistry, 2016, 59, 2841-2846.	6.4	20
42	The Effects of Temperature and Growth Phase on the Lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii. Life, 2015, 5, 1539-1566.	2.4	38
43	Quantitative Profiling of Long-Chain Bases by Mass Tagging and Parallel Reaction Monitoring. PLoS ONE, 2015, 10, e0144817.	2.5	9
44	The GARP complex is required for cellular sphingolipid homeostasis. ELife, 2015, 4, .	6.0	88
45	Identification and Annotation of Lipid Species in Metabolomics Studies Need Improvement. Clinical Chemistry, 2015, 61, 1542-1544.	3.2	30
46	Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipidâ€enriched milk formula by GC and MS/MS ^{ALL} . European Journal of Lipid Science and Technology, 2015, 117, 751-759.	1.5	57
47	Quantitative Spatial Analysis of the Mouse Brain Lipidome by Pressurized Liquid Extraction Surface Analysis. Analytical Chemistry, 2015, 87, 1749-1756.	6.5	48
48	Structural characterization of ether lipids from the archaeon <i>Sulfolobus islandicus</i> by high-resolution shotgun lipidomics. Journal of Mass Spectrometry, 2015, 50, 476-487.	1.6	35
49	Rom2-dependent Phosphorylation of Elo2 Controls the Abundance of Very Long-chain Fatty Acids. Journal of Biological Chemistry, 2015, 290, 4238-4247.	3.4	26
50	Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. British Journal of Nutrition, 2015, 113, 1677-1688.	2.3	93
51	Quantitative Analysis of Proteome and Lipidome Dynamics Reveals Functional Regulation of Global Lipid Metabolism. Chemistry and Biology, 2015, 22, 412-425.	6.0	77
52	Saccharomyces cerevisiae Is Dependent on Vesicular Traffic between the Golgi Apparatus and the Vacuole When Inositolphosphorylceramide Synthase Aur1 Is Inactivated. Eukaryotic Cell, 2015, 14, 1203-1216.	3.4	12
53	Comprehensive Lipidome Analysis by Shotgun Lipidomics on a Hybrid Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 2015, 26, 133-148.	2.8	118
54	Modulation of the Lactobacillus acidophilus La-5 lipidome by different growth conditions. Microbiology (United Kingdom), 2015, 161, 1990-1998.	1.8	4

#	Article	IF	CITATIONS
55	Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biology, 2014, 15, 43.	3.0	104
56	An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER. Cell Reports, 2014, 6, 44-55.	6.4	99
57	High-content screening of yeast mutant libraries by shotgun lipidomics. Molecular BioSystems, 2014, 10, 1364-1376.	2.9	28
58	Characterization of yeast mutants lacking alkaline ceramidases <i>YPC1</i> and <i>YDC1</i> . FEMS Yeast Research, 2014, 14, 776-788.	2.3	13
59	Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity: Recommendation for largeâ€scale global lipidome analysis. European Journal of Lipid Science and Technology, 2014, 116, 1618-1620.	1.5	11
60	A Lipid E-MAP Identifies Ubx2 as a Critical Regulator of Lipid Saturation and Lipid Bilayer Stress. Molecular Cell, 2013, 51, 519-530.	9.7	127
61	Transformation-Associated Changes in Sphingolipid Metabolism Sensitize Cells to Lysosomal Cell Death Induced by Inhibitors of Acid Sphingomyelinase. Cancer Cell, 2013, 24, 379-393.	16.8	281
62	Profiling of lipid species by normal-phase liquid chromatography, nanoelectrospray ionization, and ion trap–orbitrap mass spectrometry. Analytical Biochemistry, 2013, 443, 88-96.	2.4	24
63	Composition, structure and properties of POPC–triolein mixtures. Evidence of triglyceride domains in phospholipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1909-1917.	2.6	22
64	Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2450-2459.	2.6	45
65	Functional Loss of Two Ceramide Synthases Elicits Autophagy-Dependent Lifespan Extension in C. elegans. PLoS ONE, 2013, 8, e70087.	2.5	56
66	Analysis of Lipid Experiments (ALEX): A Software Framework for Analysis of High-Resolution Shotgun Lipidomics Data. PLoS ONE, 2013, 8, e79736.	2.5	142
67	Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. ELife, 2013, 2, e00953.	6.0	167
68	A novel pathway of ceramide metabolism in <i>Saccharomyces cerevisiae</i> . Biochemical Journal, 2012, 447, 103-114.	3.7	32
69	Exogenous Ether Lipids Predominantly Target Mitochondria. PLoS ONE, 2012, 7, e31342.	2.5	22
70	Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of <i>Candida albicans</i> . Molecular Microbiology, 2012, 83, 728-745.	2.5	32
71	Gem1 and <scp>ERMES</scp> Do Not Directly Affect Phosphatidylserine Transport from <scp>ER</scp> to Mitochondria or Mitochondrial Inheritance. Traffic, 2012, 13, 880-890.	2.7	154
72	Membrane lipidome of an epithelial cell line. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1903-1907.	7.1	432

#	Article	IF	CITATIONS
73	Quantitative profiling of PE, MMPE, DMPE, and PC lipid species by multiple precursor ion scanning: A tool for monitoring PE metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 1081-1089.	2.4	29
74	Generic Sorting of Raft Lipids into Secretory Vesicles in Yeast. Traffic, 2011, 12, 1139-1147.	2.7	63
75	Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP). Journal of Biological Chemistry, 2011, 286, 13346-13356.	3.4	23
76	Yeast Cells Lacking All Known Ceramide Synthases Continue to Make Complex Sphingolipids and to Incorporate Ceramides into Glycosylphosphatidylinositol (GPI) Anchors. Journal of Biological Chemistry, 2011, 286, 6769-6779.	3.4	19
77	Native pulmonary surfactant membranes show similar phase segregation in bilayers and monolayers, both qualitatively and quantitatively, as predicted by lipid composition analysis. Chemistry and Physics of Lipids, 2010, 163, S31.	3.2	0
78	A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nature Structural and Molecular Biology, 2010, 17, 901-908.	8.2	93
79	Orm family proteins mediate sphingolipid homeostasis. Nature, 2010, 463, 1048-1053.	27.8	544
80	Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains. Journal of Biological Chemistry, 2010, 285, 30224-30232.	3.4	96
81	Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. Journal of Cell Biology, 2009, 185, 601-612.	5.2	369
82	Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2136-2141.	7.1	932
83	The Lipidomes of Vesicular Stomatitis Virus, Semliki Forest Virus, and the Host Plasma Membrane Analyzed by Quantitative Shotgun Mass Spectrometry. Journal of Virology, 2009, 83, 7996-8003.	3.4	98
84	Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO Journal, 2009, 28, 466-476.	7.8	252
85	<i>PSI1</i> is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast. FEBS Journal, 2009, 276, 6412-6424.	4.7	41
86	High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2664-2672.	2.3	197
87	Osmolality, Temperature, and Membrane Lipid Composition Modulate the Activity of Betaine Transporter BetP in <i>Corynebacterium glutamicum</i> . Journal of Bacteriology, 2007, 189, 7485-7496.	2.2	50
88	The role of lipids and salts in two-dimensional crystallization of the glycine–betaine transporter BetP from Corynebacterium glutamicum. Journal of Structural Biology, 2007, 160, 275-286.	2.8	15
89	Automated Identification and Quantification of Glycerophospholipid Molecular Species by Multiple Precursor Ion Scanning. Analytical Chemistry, 2006, 78, 6202-6214.	6.5	379
90	Lipid Profiling by Multiple Precursor and Neutral Loss Scanning Driven by the Data-Dependent Acquisition. Analytical Chemistry, 2006, 78, 585-595.	6.5	272

#	Article	IF	CITATIONS
91	Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap–orbitrap mass spectrometry. Journal of Mass Spectrometry, 2006, 41, 372-389.	1.6	124
92	Polyene-lipids: A new tool to image lipids. Nature Methods, 2005, 2, 39-45.	19.0	169
93	Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. Journal of Lipid Research, 2003, 44, 2181-2192.	4.2	277