
Armen Saghatelyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9556722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A light-inducible protein clustering system for in vivo analysis of α-synuclein aggregation in Parkinson disease. PLoS Biology, 2022, 20, e3001578.	5.6	12
2	Deciphering heterogeneous populations of migrating cells based on the computational assessment of their dynamic properties. Stem Cell Reports, 2022, 17, 911-923.	4.8	3
3	AMPK-induced autophagy as a key regulator of cell migration. Autophagy, 2021, 17, 828-829.	9.1	9
4	Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell, 2021, 184, 709-722.e13.	28.9	54
5	Live imaging of adult neural stem cells in freely behaving mice using mini-endoscopes. STAR Protocols, 2021, 2, 100596.	1.2	2
6	Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nature Communications, 2021, 12, 3653.	12.8	30
7	In vivo live imaging of postnatal neural stem cells. Development (Cambridge), 2021, 148, .	2.5	2
8	Calcium signaling as an integrator and decoder of niche factors to control somatic stem cell quiescence and activation. FEBS Journal, 2021, , .	4.7	1
9	SARS-CoV-2 deregulates the vascular and immune functions of brain pericytes via Spike protein. Neurobiology of Disease, 2021, 161, 105561.	4.4	45
10	LRIG1-Mediated Inhibition of EGF Receptor Signaling Regulates Neural Precursor Cell Proliferation in the Neocortex. Cell Reports, 2020, 33, 108257.	6.4	13
11	Developmental Potential and Plasticity of Olfactory Epithelium Stem Cells Revealed by Heterotopic Grafting in the Adult Brain. Stem Cell Reports, 2020, 14, 692-702.	4.8	4
12	Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals. Frontiers in Neuroscience, 2020, 14, 819.	2.8	10
13	Intrinsic Mechanisms Regulating Neuronal Migration in the Postnatal Brain. Frontiers in Cellular Neuroscience, 2020, 14, 620379.	3.7	23
14	The dynamic interplay between ATP/ADP levels and autophagy sustain neuronal migration in vivo. ELife, 2020, 9, .	6.0	26
15	Regeneration in the Olfactory Bulb. , 2020, , 610-623.		1
16	The role of calretinin-expressing granule cells in olfactory bulb functions and odor behavior. Scientific Reports, 2018, 8, 9385.	3.3	12
17	Motionâ€free endoscopic system for brain imaging at variable focal depth using liquid crystal lenses. Journal of Biophotonics, 2017, 10, 762-774.	2.3	19
18	Different forms of structural plasticity in the adult olfactory bulb. Neurogenesis (Austin, Tex), 2017, 4, e1301850.	1.5	18

Armen Saghatelyan

#	Article	IF	CITATIONS
19	CaMKIIα Expression Defines Two Functionally Distinct Populations of Granule Cells Involved in Different Types of Odor Behavior. Current Biology, 2017, 27, 3315-3329.e6.	3.9	15
20	The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network. Neural Plasticity, 2016, 2016, 1-8.	2.2	20
21	The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb. Frontiers in Neuroscience, 2016, 10, 149.	2.8	67
22	Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb. Nature Communications, 2016, 7, 12659.	12.8	42
23	Revealing pathologies in the liquid crystalline structures of the brain by polarimetric studies (Presentation Recording). Proceedings of SPIE, 2015, , .	0.8	0
24	Tracking Neuronal Migration in Adult Brain Slices. Current Protocols in Neuroscience, 2015, 71, 3.28.1-3.28.13.	2.6	8
25	Activity of the Principal Cells of the Olfactory Bulb Promotes a Structural Dynamic on the Distal Dendrites of Immature Adult-Born Granule Cells via Activation of NMDA Receptors. Journal of Neuroscience, 2014, 34, 1748-1759.	3.6	25
26	The Extracellular Matrix Glycoprotein Tenascin-R Affects Adult But Not Developmental Neurogenesis in the Olfactory Bulb. Journal of Neuroscience, 2013, 33, 10324-10339.	3.6	25
27	Reactive Glia in the Injured Brain Acquire Stem Cell Properties in Response to Sonic Hedgehog. Cell Stem Cell, 2013, 12, 629.	11.1	4
28	Reactive Glia in the Injured Brain Acquire Stem Cell Properties in Response to Sonic Hedgehog. Cell Stem Cell, 2013, 12, 426-439.	11.1	332
29	Brain-Derived Neurotrophic Factor Promotes Vasculature-Associated Migration of Neuronal Precursors toward the Ischemic Striatum. PLoS ONE, 2013, 8, e55039.	2.5	123
30	Astrocytes Control the Development of the Migration-Promoting Vasculature Scaffold in the Postnatal Brain via VEGF Signaling. Journal of Neuroscience, 2012, 32, 1687-1704.	3.6	116
31	Time-lapse Imaging of Neuroblast Migration in Acute Slices of the Adult Mouse Forebrain. Journal of Visualized Experiments, 2012, , e4061.	0.3	8
32	Newborn neurons in the adult olfactory bulb: Unique properties for specific odor behavior. Behavioural Brain Research, 2012, 227, 480-489.	2.2	46
33	Role of sensory activity on chemospecific populations of interneurons in the adult olfactory bulb. Journal of Comparative Neurology, 2010, 518, 1847-1861.	1.6	47
34	De-routing neuronal precursors in the adult brain to sites of injury: Role of the vasculature. Neuropharmacology, 2010, 58, 877-883.	4.1	28
35	Vasculature Guides Migrating Neuronal Precursors in the Adult Mammalian Forebrain via Brain-Derived Neurotrophic Factor Signaling. Journal of Neuroscience, 2009, 29, 4172-4188.	3.6	310
36	Role of blood vessels in the neuronal migration. Seminars in Cell and Developmental Biology, 2009, 20, 744-750.	5.0	35

#	Article	IF	CITATIONS
37	Interneurons Produced in Adulthood Are Required for the Normal Functioning of the Olfactory Bulb Network and for the Execution of Selected Olfactory Behaviors. Journal of Neuroscience, 2009, 29, 15245-15257.	3.6	222
38	A Dlx2- and Pax6-Dependent Transcriptional Code for Periglomerular Neuron Specification in the Adult Olfactory Bulb. Journal of Neuroscience, 2008, 28, 6439-6452.	3.6	185
39	Delayed onset of odor detection in neonatal mice lacking tenascin-C. Molecular and Cellular Neurosciences, 2006, 32, 174-186.	2.2	34
40	Neuronal fate determinants of adult olfactory bulb neurogenesis. Nature Neuroscience, 2005, 8, 865-872.	14.8	549
41	Neonatal and Adult Neurogenesis Provide Two Distinct Populations of Newborn Neurons to the Mouse Olfactory Bulb. Journal of Neuroscience, 2005, 25, 6816-6825.	3.6	178
42	Integrating new neurons into the adult olfactory bulb: joining the network, life–death decisions, and the effects of sensory experience. Trends in Neurosciences, 2005, 28, 248-254.	8.6	229
43	Activity-Dependent Adjustments of the Inhibitory Network in the Olfactory Bulb following Early Postnatal Deprivation. Neuron, 2005, 46, 103-116.	8.1	152
44	Inhibitory Interneurons in the Olfactory Bulb: From Development to Function. Neuroscientist, 2004, 10, 292-303.	3.5	60
45	Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nature Neuroscience, 2004, 7, 347-356.	14.8	201
46	Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9822-9826.	7.1	99
47	Reduced GABAergic transmission and number of hippocampal perisomatic inhibitory synapses in juvenile mice deficient in the neural cell adhesion molecule L1. Molecular and Cellular Neurosciences, 2004, 26, 191-203.	2.2	61
48	Local neurons play key roles in the mammalian olfactory bulb. Journal of Physiology (Paris), 2003, 97, 517-528.	2.1	28
49	Recognition molecule associated carbohydrate inhibits postsynaptic GABAB receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses. Molecular and Cellular Neurosciences, 2003, 24, 271-282.	2.2	50
50	Reduced Perisomatic Inhibition, Increased Excitatory Transmission, and Impaired Long-Term Potentiation in Mice Deficient for the Extracellular Matrix Glycoprotein Tenascin-R. Molecular and Cellular Neurosciences, 2001, 17, 226-240.	2.2	173
51	The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus. European Journal of Neuroscience, 2000, 12, 3331-3342.	2.6	107