Phillip McGinnity

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/95564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Escalating the conflict? Intersex genetic correlations influence adaptation to environmental change in facultatively migratory populations. Evolutionary Applications, 2022, 15, 773-789.	3.1	6
2	Evolution and Expression of the Immune System of a Facultatively Anadromous Salmonid. Frontiers in Immunology, 2021, 12, 568729.	4.8	7
3	Alternative migratory tactics in brown trout (Salmo trutta) are underpinned by divergent regulation of metabolic but not neurological genes. Ecology and Evolution, 2021, 11, 8347-8362.	1.9	3
4	The early marine distribution of Atlantic salmon in the Northâ€east Atlantic: A genetically informed stockâ€specific synthesis. Fish and Fisheries, 2021, 22, 1274-1306.	5.3	26
5	SalmoSim: the development of a three-compartment in vitro simulator of the Atlantic salmon GI tract and associated microbial communities. Microbiome, 2021, 9, 179.	11.1	5
6	Associations between metabolic traits and growth rate in brown trout (<i>Salmo trutta</i>) depend on thermal regime. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211509.	2.6	6
7	Domesticationâ€induced reduction in eye size revealed in multiple common garden experiments: The case of Atlantic salmon (<i>Salmo salar</i> L.). Evolutionary Applications, 2021, 14, 2319-2332.	3.1	4
8	Using Food Webs and Metabolic Theory to Monitor, Model, and Manage Atlantic Salmon—A Keystone Species Under Threat. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
9	Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201671.	2.6	30
10	Spawning-related movements in a salmonid appear timed to reduce exposure to visually oriented predators. Animal Behaviour, 2020, 170, 65-79.	1.9	10
11	More than one million barriers fragment Europe's rivers. Nature, 2020, 588, 436-441.	27.8	314
12	Telemetry and genetics reveal asymmetric dispersal of aÂlakeâ€feeding salmonid between inflow and outflow spawning streams at a microgeographic scale. Ecology and Evolution, 2020, 10, 1762-1783.	1.9	11
13	A call for global action to conserve native trout in the 21st century and beyond. Ecology of Freshwater Fish, 2020, 29, 429-432.	1.4	6
14	Food and temperature stressors have opposing effects in determining flexible migration decisions in brown trout (<i>Salmo trutta</i>). Global Change Biology, 2020, 26, 2878-2896.	9.5	18
15	Heritability estimation via molecular pedigree reconstruction in a wild fish population reveals substantial evolutionary potential for sea age at maturity, but not size within age classes. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 790-805.	1.4	10
16	The Interplay Between Extrinsic and Intrinsic Factors in Determining Migration Decisions in Brown Trout (Salmo trutta): An Experimental Study. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	24
17	The application of CRISPRâ€Cas for single species identification from environmental DNA. Molecular Ecology Resources, 2019, 19, 1106-1114.	4.8	65
18	Evolutionary stasis of a heritable morphological trait in a wild fish population despite apparent directional selection. Ecology and Evolution, 2019, 9, 7096-7111.	1.9	14

#	Article	IF	CITATIONS
19	Anadromy, potamodromy and residency in brown trout <i>Salmo trutta</i> : the role of genes and the environment. Journal of Fish Biology, 2019, 95, 692-718.	1.6	122

A microsatellite baseline for genetic stock identification of European Atlantic salmon (Salmo salar) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 $\frac{12}{14}$

21	Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics, 2017, 18, 484.	2.8	99
22	Seascape and its effect on migratory lifeâ€history strategy influences gene flow among coastal brown trout (<i>Salmo trutta</i>) populations in the English Channel. Journal of Biogeography, 2016, 43, 498-509.	3.0	18
23	The response of North Atlantic diadromous fish to multiple stressors, including land use change: a multidecadal study. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1759-1769.	1.4	24
24	A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. Royal Society Open Science, 2016, 3, 150565.	2.4	57
25	The paradox of "premature migration―by adult anadromous salmonid fishes: patterns and hypotheses. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1015-1030.	1.4	113
26	The biogeography of the atlantic salmon (<i>Salmo salar</i>) gut microbiome. ISME Journal, 2016, 10, 1280-1284.	9.8	301
27	Where the Lake Meets the Sea: Strong Reproductive Isolation Is Associated with Adaptive Divergence between Lake Resident and Anadromous Three-Spined Sticklebacks. PLoS ONE, 2015, 10, e0122825.	2.5	12
28	The signature of fine scale local adaptation in Atlantic salmon revealed from common garden experiments inÂnature. Evolutionary Applications, 2015, 8, 881-900.	3.1	13
29	The fecundity of wild Irish Atlantic salmon Salmo salar L. and its application for stock assessment purposes. Fisheries Research, 2015, 164, 159-169.	1.7	17
30	Quantifying heritable variation in fitness-related traits of wild, farmed and hybrid Atlantic salmon families in a wild river environment. Heredity, 2015, 115, 173-184.	2.6	31
31	Population genomic analyses of earlyâ€phase <scp>A</scp> tlantic <scp>S</scp> almon (<i><scp>S</scp>almo salar</i>) domestication/captive breeding. Evolutionary Applications, 2015, 8, 93-107.	3.1	59
32	Anthropocene environmental change in an internationally important oligotrophic catchment on the Atlantic seaboard of western Europe. Anthropocene, 2014, 5, 9-21.	3.3	14
33	Circadian clock gene (<i><scp>O</scp>ts<scp>C</scp>lock1b)</i> variation and time of ocean return in <scp>A</scp> tlantic salmon <i><scp>S</scp>almo salar</i> . Fisheries Management and Ecology, 2014, 21, 82-87.	2.0	7
34	Multiplexing with three-primer PCR for rapid and economical microsatellite validation. Hereditas, 2014, 151, 43-54.	1.4	22
35	Objectively Assigning Species and Ages to Salmonid Length Data from Dual-Frequency Identification Sonar. Transactions of the American Fisheries Society, 2014, 143, 573-585.	1.4	6
36	Molecular pedigree reconstruction and estimation of evolutionary parameters in a wild Atlantic salmon river system with incomplete sampling: a power analysis. BMC Evolutionary Biology, 2014, 14, 68.	3.2	19

PHILLIP MCGINNITY

#	Article	IF	CITATIONS
37	Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation. Journal of Marine Systems, 2014, 133, 77-87.	2.1	68
38	Rapid, economical singleâ€nucleotide polymorphism and microsatellite discovery based on <i>de novo</i> assembly of a reduced representation genome in a nonâ€model organism: a case study of Atlantic cod <i>Gadus morhua</i> . Journal of Fish Biology, 2013, 82, 944-958.	1.6	13
39	Improving abundance estimates from electrofishing removal sampling. Fisheries Research, 2013, 137, 104-115.	1.7	24
40	SNPâ€array reveals genomeâ€wide patterns of geographical and potential adaptive divergence across the natural range of <scp>A</scp> tlantic salmon (<i><scp>S</scp>almo salar</i>). Molecular Ecology, 2013, 22, 532-551.	3.9	212
41	Beaufort trout <scp>MicroPlex</scp> : a highâ€throughput multiplex platform comprising 38 informative microsatellite loci for use in resident and anadromous (sea trout) brown trout <i>Salmo trutta</i> genetic studies. Journal of Fish Biology, 2013, 82, 1789-1804.	1.6	14
42	An analysis of genetic stock identification on a small geographical scale using microsatellite markers, and its application in the management of a mixedâ€stock fishery for Atlantic salmon <i>Salmo salar</i> in Ireland. Journal of Fish Biology, 2013, 82, 2080-2094.	1.6	26
43	diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 2013, 4, 782-788.	5.2	1,051
44	Selection and Phylogenetics of Salmonid MHC Class I: Wild Brown Trout (Salmo trutta) Differ from a Non-Native Introduced Strain. PLoS ONE, 2013, 8, e63035.	2.5	3
45	Screen for Footprints of Selection during Domestication/Captive Breeding of Atlantic Salmon. Comparative and Functional Genomics, 2012, 2012, 1-14.	2.0	50
46	Modelling the migration of post-smolt Atlantic salmon (Salmo salar) in the Northeast Atlantic. ICES Journal of Marine Science, 2012, 69, 1616-1624.	2.5	43
47	Balancing selection on MHC class I in wild brown trout <i>Salmo trutta</i> . Journal of Fish Biology, 2012, 81, 1357-1374.	1.6	7
48	MHC-mediated spatial distribution in brown trout (Salmo trutta) fry. Heredity, 2012, 108, 403-409.	2.6	9
49	Morphological variability of Atlantic salmon <i>Salmo salar</i> and brown trout <i>Salmo trutta</i> in different river environments. Ecology of Freshwater Fish, 2012, 21, 420-432.	1.4	24
50	A predictive model for estimating river habitat area using GISâ€derived catchment and river variables. Fisheries Management and Ecology, 2012, 19, 69-77.	2.0	8
51	Sea-Age Variation in Maiden Atlantic Salmon Spawners: Phenotypic Plasticity or Genetic Polymorphism?. Bulletin of Mathematical Biology, 2012, 74, 615-640.	1.9	9
52	Contrasting responses to selection in class I and class $I \hat{I} \pm m$ ajor histocompatibility-linked markers in salmon. Heredity, 2011, 107, 143-154.	2.6	11
53	Varying diseaseâ€mediated selection at different lifeâ€history stages of Atlantic salmon in fresh water. Evolutionary Applications, 2011, 4, 749-762.	3.1	15
54	Complex pattern of genetic structuring in the Atlantic salmon (<i>Salmo salar</i> L.) of the River Foyle system in northwest Ireland: disentangling the evolutionary signal from population stochasticity. Ecology and Evolution, 2011, 1, 359-372.	1.9	14

PHILLIP MCGINNITY

#	Article	IF	CITATIONS
55	Microsatellite standardization and evaluation of genotyping error in a large multi-partner research programme for conservation of Atlantic salmon (Salmo salar L.). Genetica, 2011, 139, 353-367.	1.1	68
56	Genetic stock identification of Atlantic salmon (Salmo salar) populations in the southern part of the European range. BMC Genetics, 2010, 11, 31.	2.7	65
57	Form and uncertainty in stock–recruitment relations: observations and implications for Atlantic salmon (Salmo salar) management. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1040-1055.	1.4	12
58	Impact of naturally spawning captive-bred Atlantic salmon on wild populations: depressed recruitment and increased risk of climate-mediated extinction. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3601-3610.	2.6	98
59	Demographics and landscape features determine intrariver population structure in Atlantic salmon (<i>Salmo salar </i> L.): the case of the River Moy in Ireland. Molecular Ecology, 2008, 17, 4786-4800.	3.9	38
60	Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 861-869.	2.6	42
61	Population specific smolt development, migration and maturity schedules in Atlantic salmon in a natural river environment. Aquaculture, 2007, 273, 257-268.	3.5	27
62	Spatial and temporal patterns in microsatellite DNA variation of wild Atlantic salmon, Salmo salar, in Irish rivers. Fisheries Management and Ecology, 2007, 14, 209-219.	2.0	21
63	Long-term declines in body size and shifts in run timing of Atlantic salmon in Ireland. Journal of Fish Biology, 2006, 68, 1713-1730.	1.6	69
64	Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. ICES Journal of Marine Science, 2006, 63, 1234-1247.	2.5	144
65	Temporal variation in an immune response gene (MHC I) in anadromous Salmo trutta in an Irish river before and during aquaculture activities. ICES Journal of Marine Science, 2006, 63, 1248-1255.	2.5	24
66	Application of pre-fishery abundance modelling and Bayesian hierarchical stock and recruitment analysis to the provision of precautionary catch advice for Irish salmon (Salmo salar L.) fisheries. ICES Journal of Marine Science, 2004, 61, 1370-1378.	2.5	23
67	Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar , as a result of interactions with escaped farm salmon. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2443-2450.	2.6	615
68	The importance of smolt development to salmon conservation, culture, and management: perspectives from the 6th International Workshop on Salmonid Smoltification. Aquaculture, 2003, 222, 1-14.	3.5	18
69	Management of salmonid fisheries in the British Isles: towards a practical approach based on population genetics. Fisheries Research, 2003, 62, 193-209.	1.7	69
70	Restocking of salmonids—opportunities and limitations. Fisheries Research, 2003, 62, 211-227.	1.7	147
71	Setting biological reference points for Atlantic salmon stocks: transfer of information from data-rich to sparse-data situations by Bayesian hierarchical modelling. ICES Journal of Marine Science, 2003, 60, 1177-1193.	2.5	47
72	Population genetics reveal patterns of natural colonisation of an ecologically and commercially important invasive fish. Canadian Journal of Fisheries and Aquatic Sciences, 0, , 1-15.	1.4	1