
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9556301/publications.pdf Version: 2024-02-01

ALBERTO SESANA

#	Article	IF	CITATIONS
1	The International Pulsar Timing Array project: using pulsars as a gravitational wave detector. Classical and Quantum Gravity, 2010, 27, 084013.	4.0	494
2	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	4.0	451
3	Low-frequency gravitational-wave science with eLISA/NGO. Classical and Quantum Gravity, 2012, 29, 124016.	4.0	391
4	European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2577-2599.	4.4	380
5	High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3341-3380.	4.4	351
6	Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Physical Review D, 2017, 95, .	4.7	344
7	The International Pulsar Timing Array: First data release. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1267-1288.	4.4	332
8	The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays. Monthly Notices of the Royal Astronomical Society, 2008, 390, 192-209.	4.4	331
9	Science with the space-based interferometer eLISA: Supermassive black hole binaries. Physical Review D, 2016, 93, .	4.7	321
10	Prospects for Multiband Gravitational-Wave Astronomy after GW150914. Physical Review Letters, 2016, 116, 231102.	7.8	299
11	THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND. Astrophysical Journal, 2016, 821, 13.	4.5	227
12	Lowâ€Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies. Astrophysical Journal, 2004, 611, 623-632.	4.5	212
13	Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays. Monthly Notices of the Royal Astronomical Society, 2009, 394, 2255-2265.	4.4	201
14	Gravitational Wave Astronomy with the SKA. , 2015, , .		174
15	Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 002-002.	5.4	167
16	Interaction of Massive Black Hole Binaries with Their Stellar Environment. I. Ejection of Hypervelocity Stars. Astrophysical Journal, 2006, 651, 392-400.	4.5	164
17	The imprint of massive black hole formation models on the LISA data stream. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1711-1716.	4.4	153
18	Limiting eccentricity of subparsec massive black hole binaries surrounded by self-gravitating gas discs. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3033-3041.	4.4	150

#	Article	IF	CITATIONS
19	Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers. Physical Review Letters, 2016, 117, 101102.	7.8	148
20	Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 433, L1-L5.	3.3	147
21	The Gravitational Wave Signal from Massive Black Hole Binaries and Its Contribution to theLISAData Stream. Astrophysical Journal, 2005, 623, 23-30.	4.5	139
22	LINKING THE SPIN EVOLUTION OF MASSIVE BLACK HOLES TO GALAXY KINEMATICS. Astrophysical Journal, 2014, 794, 104.	4.5	138
23	Evolution of binary black holes in self gravitating discs. Astronomy and Astrophysics, 2012, 545, A127.	5.1	131
24	Expected properties of the first gravitational wave signal detected with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2417-2433.	4.4	130
25	The TianQin project: Current progress on science and technology. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	129
26	ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES. Astrophysical Journal, 2009, 697, L149-L152.	4.5	123
27	SELF CONSISTENT MODEL FOR THE EVOLUTION OF ECCENTRIC MASSIVE BLACK HOLE BINARIES IN STELLAR ENVIRONMENTS: IMPLICATIONS FOR GRAVITATIONAL WAVE OBSERVATIONS. Astrophysical Journal, 2010, 719, 851-864.	4.5	119
28	The quest for dual and binary supermassive black holes: A multi-messenger view. New Astronomy Reviews, 2019, 86, 101525.	12.8	119
29	eLISA eccentricity measurements as tracers of binary black hole formation. Physical Review D, 2016, 94,	4.7	115
30	TIDAL STELLAR DISRUPTIONS BY MASSIVE BLACK HOLE PAIRS. II. DECAYING BINARIES. Astrophysical Journal, 2011, 729, 13.	4.5	113
31	Reconstructing the massive black hole cosmic history through gravitational waves. Physical Review D, 2011, 83, .	4.7	110
32	GRAVITATIONAL WAVES FROM INDIVIDUAL SUPERMASSIVE BLACK HOLE BINARIES IN CIRCULAR ORBITS: LIMITS FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES. Astrophysical Journal, 2014, 794, 141.	4.5	104
33	Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy, 2012, 2012, 1-14.	1.1	100
34	The local nanohertz gravitational-wave landscape from supermassive black hole binaries. Nature Astronomy, 2017, 1, 886-892.	10.1	99
35	The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4508-4526.	4.4	97
36	Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves. Physical Review D, 2010, 81, .	4.7	94

#	Article	IF	CITATIONS
37	Scattering experiments meet <i>N</i> -body – I. A practical recipe for the evolution of massive black hole binaries in stellar environments. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 454, L66-L70.	3.3	92
38	Post-Newtonian evolution of massive black hole triplets in galactic nuclei – IV. Implications for LISA. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4044-4060.	4.4	91
39	Gas-driven massive black hole binaries: signatures in the nHz gravitational wave background. Monthly Notices of the Royal Astronomical Society, 2011, 411, 1467-1479.	4.4	90
40	The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range. Classical and Quantum Gravity, 2020, 37, 215011.	4.0	90
41	Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2012, 420, 860-877.	4.4	88
42	Unveiling the gravitational universe at μ-Hz frequencies. Experimental Astronomy, 2021, 51, 1333-1383.	3.7	88
43	Constraining stellar binary black hole formation scenarios with <i>eLISA</i> eccentricity measurements. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4375-4380.	4.4	85
44	From spin noise to systematics: stochastic processes in the first International Pulsar Timing Array data release. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2161-2187.	4.4	82
45	Resolving multiple supermassive black hole binaries with pulsar timing arrays. Physical Review D, 2012, 85, .	4.7	80
46	Interaction of Massive Black Hole Binaries with Their Stellar Environment. II. Loss Cone Depletion and Binary Orbital Decay. Astrophysical Journal, 2007, 660, 546-555.	4.5	76
47	On the coexistence of stellar-mass and intermediate-mass black holes in globular clusters. Monthly Notices of the Royal Astronomical Society, 2014, 444, 29-42.	4.4	72
48	Cosmography with strong lensing of LISA gravitational wave sources. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2773-2781.	4.4	69
49	Interaction of Massive Black Hole Binaries with Their Stellar Environment. III. Scattering of Bound Stars. Astrophysical Journal, 2008, 686, 432-447.	4.5	67
50	Triplets of supermassive black holes: astrophysics, gravitational waves and detection. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2308-2320.	4.4	64
51	Science with the TianQin observatory: Preliminary results on massive black hole binaries. Physical Review D, 2019, 100, .	4.7	64
52	Insights into the astrophysics of supermassive black hole binaries from pulsar timing observations. Classical and Quantum Gravity, 2013, 30, 224014.	4.0	62
53	Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2018, 477, 964-976.	4.4	61
54	Strong Lensing of Gravitational Waves as Seen by LISA. Physical Review Letters, 2010, 105, 251101.	7.8	59

#	Article	IF	CITATIONS
55	Prospects for observing extreme-mass-ratio inspirals with LISA. Journal of Physics: Conference Series, 2017, 840, 012021.	0.4	58
56	Massive black hole binary eccentricity in rotating stellar systems. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 415, L35-L39.	3.3	56
57	Hypervelocity stars and the environment of Sgr A. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 379, L45-L49.	3.3	54
58	Post-Newtonian evolution of massive black hole triplets in galactic nuclei – I. Numerical implementation and tests. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4419-4434.	4.4	54
59	Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 463, L6-L11.	3.3	53
60	Testing the Binary Hypothesis: Pulsar Timing Constraints on Supermassive Black Hole Binary Candidates. Astrophysical Journal, 2018, 856, 42.	4.5	53
61	Post-Newtonian evolution of massive black hole triplets in galactic nuclei – III. A robust lower limit to the nHz stochastic background of gravitational waves. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2599-2612.	4.4	52
62	Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals. Physical Review D, 2019, 100, .	4.7	51
63	CONSTRAINING THE DARK ENERGY EQUATION OF STATE USING <i>LISA</i> OBSERVATIONS OF SPINNING MASSIVE BLACK HOLE BINARIES. Astrophysical Journal, 2011, 732, 82.	4.5	49
64	Detecting double neutron stars with LISA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3061-3072.	4.4	49
65	Gravitational waves and pulsar timing: stochastic background, individual sources and parameter estimation. Classical and Quantum Gravity, 2010, 27, 084016.	4.0	48
66	Graviton mass bounds from space-based gravitational-wave observations of massive black hole populations. Physical Review D, 2011, 84, .	4.7	48
67	The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational-wave searches. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4421-4440.	4.4	48
68	Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background. Physical Review Letters, 2015, 115, 041101.	7.8	47
69	Post-Newtonian evolution of massive black hole triplets in galactic nuclei – II. Survey of the parameter space. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3910-3926.	4.4	47
70	Stellar binary black holes in the LISA band: a new class of standard sirens. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3485-3492.	4.4	47
71	Massive BH binaries as periodically variable AGN. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1579-1594.	4.4	44
72	Migration of massive black hole binaries in self-gravitating discs: retrograde versus prograde. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3476-3489.	4.4	42

#	Article	IF	CITATIONS
73	On the search of electromagnetic cosmological counterparts to coalescences of massive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2006, 372, 869-875.	4.4	41
74	Observing white dwarfs orbiting massive black holes in the gravitational wave and electro-magnetic window. Monthly Notices of the Royal Astronomical Society, 2008, 391, 718-726.	4.4	40
75	Gravitational Wave Sources in the Era of Multi-Band Gravitational Wave Astronomy. , 2017, , 43-140.		40
76	Science with the TianQin observatory: Preliminary result on extreme-mass-ratio inspirals. Physical Review D, 2020, 102, .	4.7	40
77	OBSERVING GRAVITATIONAL WAVES FROM THE FIRST GENERATION OF BLACK HOLES. Astrophysical Journal, 2009, 698, L129-L132.	4.5	39
78	The astrophysical science case for a decihertz gravitational-wave detector. Classical and Quantum Gravity, 2018, 35, 054004.	4.0	38
79	Resolving multiple supermassive black hole binaries with pulsar timing arrays. II. Genetic algorithm implementation. Physical Review D, 2013, 87, .	4.7	37
80	Constraining properties of the black hole population using LISA. Classical and Quantum Gravity, 2011, 28, 094018.	4.0	36
81	Pulsar timing array analysis for black hole backgrounds. Classical and Quantum Gravity, 2013, 30, 224005.	4.0	36
82	From bright binaries to bumpy backgrounds: Mapping realistic gravitational wave skies with pulsar-timing arrays. Physical Review D, 2020, 102, .	4.7	36
83	Missing black holes in brightest cluster galaxies as evidence for the occurrence of superkicks in nature. Monthly Notices of the Royal Astronomical Society, 2015, 446, 38-55.	4.4	35
84	Constraining astrophysical observables of galaxy and supermassive black hole binary mergers using pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2019, 488, 401-418.	4.4	34
85	Detectable Environmental Effects in GW190521-like Black-Hole Binaries with LISA. Physical Review Letters, 2021, 126, 101105.	7.8	34
86	Observing the inspiral of coalescing massive black hole binaries with LISA in the era of multimessenger astrophysics. Physical Review D, 2020, 102, .	4.7	32
87	Gravitational wave background from extreme mass ratio inspirals. Physical Review D, 2020, 102, .	4.7	32
88	Pulsar timing constraints on the Fermi massive black hole binary blazar population. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L74-L78.	3.3	31
89	Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations. Nature Astronomy, 2020, 4, 26-31.	10.1	31
90	Origin and Implications of high eccentricities in massive black hole binaries at sub-pc scales. Journal of Physics: Conference Series, 2012, 363, 012035.	0.4	29

#	Article	IF	CITATIONS
91	Merger Rate of Stellar Black Hole Binaries above the Pair-instability Mass Gap. Astrophysical Journal Letters, 2019, 883, L27.	8.3	29
92	Gravitational wave emission from binary supermassive black holes. Classical and Quantum Gravity, 2013, 30, 244009.	4.0	28
93	From galactic nuclei to the halo outskirts: tracing supermassive black holes across cosmic history and environments. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4681-4706.	4.4	27
94	Extreme recoils: impact on the detection of gravitational waves from massive black hole binaries. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 382, L6-L10.	3.3	26
95	Fundamental physics and cosmology with LISA. Classical and Quantum Gravity, 2011, 28, 114001.	4.0	26
96	Infalling clouds on to supermassive black hole binaries – II. Binary evolution and the final parsec problem. Monthly Notices of the Royal Astronomical Society, 2017, 472, 514-531.	4.4	26
97	Gravitational-wave cosmology with extreme mass-ratio inspirals. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4512-4531.	4.4	26
98	Ejection of hypervelocity binary stars by a black hole of intermediate mass orbiting Sgr A*. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 392, L31-L34.	3.3	25
99	The lifetime of binary black holes in Sérsic galaxy models. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4985-4994.	4.4	25
100	Exploring the Local Black Hole Mass Function below 10 ⁶ Solar Masses. Astrophysical Journal Letters, 2019, 883, L18.	8.3	25
101	No tension between assembly models of super massive black hole binaries and pulsar observations. Nature Communications, 2018, 9, 573.	12.8	24
102	Unveiling early black hole growth with multifrequency gravitational wave observations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4095-4109.	4.4	24
103	The effect of mission duration on LISA science objectives. General Relativity and Gravitation, 2022, 54, 3.	2.0	24
104	LISA detection of massive black hole binaries: imprint of seed populations and extreme recoils. Classical and Quantum Gravity, 2009, 26, 094033.	4.0	23
105	Astrophysical constraints on massive black hole binary evolution from pulsar timing arrays. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 455, L72-L76.	3.3	23
106	Efficient computation of the gravitational wave spectrum emitted by eccentric massive black hole binaries in stellar environments. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1738-1749.	4.4	23
107	Probing the assembly history and dynamical evolution of massive black hole binaries with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2017, 468, 404-417.	4.4	23
108	Hypervelocity Stars from a Supermassive Black Hole–Intermediate-mass Black Hole Binary. Astrophysical Journal, 2019, 878, 17.	4.5	22

#	Article	IF	CITATIONS
109	Massive black hole evolution models confronting the n-Hz amplitude of the stochastic gravitational wave background. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3488-3503.	4.4	22
110	Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection. Space Science Reviews, 2018, 214, 1.	8.1	21
111	Massive Black Hole Science with eLISA. Journal of Physics: Conference Series, 2015, 610, 012001.	0.4	20
112	Multi-band gravitational wave astronomy: science with joint space- and ground-based observations of black hole binaries. Journal of Physics: Conference Series, 2017, 840, 012018.	0.4	20
113	Post-Newtonian phase accuracy requirements for stellar black hole binaries with LISA. Physical Review D, 2019, 99, .	4.7	20
114	Probing seed black holes using future gravitational-wave detectors. Classical and Quantum Gravity, 2009, 26, 204009.	4.0	19
115	BLINDLY DETECTING MERGING SUPERMASSIVE BLACK HOLES WITH RADIO SURVEYS. Astrophysical Journal Letters, 2011, 734, L37.	8.3	19
116	Massive black hole binary plane reorientation in rotating stellar systems. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 420, L38-L42.	3.3	19
117	Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3986-4010.	4.4	19
118	Finding binary black holes in the Milky Way withÂ <i>LISA</i> . Monthly Notices of the Royal Astronomical Society: Letters, 2020, 494, L75-L80.	3.3	18
119	BLINDLY DETECTING ORBITAL MODULATIONS OF JETS FROM MERGING SUPERMASSIVE BLACK HOLES. Astrophysical Journal, 2011, 743, 136.	4.5	17
120	On the eccentricity evolution of massive black hole binaries in stellar backgrounds. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L114-L119.	3.3	17
121	Tidal disruption events from massive black hole binaries: predictions for ongoing and future surveys. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4042-4060.	4.4	16
122	Detectability of Modulated X-Rays from LISA's Supermassive Black Hole Mergers. Astrophysical Journal, 2019, 886, 146.	4.5	16
123	A Practical Guide to the Massive Black Hole Cosmic History. Advances in Astronomy, 2012, 2012, 1-16.	1.1	15
124	Detectability of Gravitational Waves from High-Redshift Binaries. Physical Review Letters, 2016, 116, 101102.	7.8	15
125	The missing link in gravitational-wave astronomy. Experimental Astronomy, 2021, 51, 1427-1440.	3.7	15
126	About gravitational-wave generation by a three-body system. Classical and Quantum Gravity, 2017, 34, 215004.	4.0	13

#	Article	IF	CITATIONS
127	The Competing Effect of Gas and Stars in the Evolution of Massive Black Hole Binaries. Astrophysical Journal Letters, 2021, 918, L15.	8.3	13
128	Circumbinary disc self-gravity governing supermassive black hole binary mergers. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	13
129	Pulsar Timing Arrays and the Challenge of Massive Black Hole Binary Astrophysics. Thirty Years of Astronomical Discovery With UKIRT, 2015, , 147-165.	0.3	13
130	Eccentricity evolution of massive black hole binaries from formation to coalescence. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4753-4765.	4.4	13
131	Resolving Massive Black Hole Binary Evolution via Adaptive Particle Splitting. Astrophysical Journal Letters, 2022, 929, L13.	8.3	13
132	Black Hole Science With the Laser Interferometer Space Antenna. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	12
133	Unveiling Sub-pc Supermassive Black Hole Binary Candidates in Active Galactic Nuclei. Astrophysical Journal, 2020, 902, 10.	4.5	12
134	Extreme mass ratio inspirals and tidal disruption events in nuclear clusters – I. Time-dependent rates. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3270-3284.	4.4	12
135	Accretion of clumpy cold gas onto massive black hole binaries: a possible fast route to binary coalescence. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3438-3455.	4.4	10
136	Associating host galaxy candidates to massive black hole binaries resolved by pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2019, 485, 248-259.	4.4	9
137	Null-stream analysis of Pulsar Timing Array data: localization of resolvable gravitational wave sources. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5447-5459.	4.4	8
138	Hypervelocity binaries from close encounters with a SMBH–IMBH binary: orbital properties and diagnostics. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3206-3218.	4.4	8
139	Multiband gravitational wave cosmology with stellar origin black hole binaries. Physical Review D, 2022, 105, .	4.7	8
140	Low-frequency gravitational radiation from coalescing massive black holes. Classical and Quantum Gravity, 2005, 22, S363-S368.	4.0	7
141	Pulsar Timing Array Constraints on the Merger Timescale of Subparsec Supermassive Black Hole Binary Candidates. Astrophysical Journal Letters, 2020, 900, L42.	8.3	7
142	Halo millisecond pulsars ejected by intermediate-mass black holes in globular clusters. Monthly Notices of the Royal Astronomical Society, 2012, 427, 502-513.	4.4	6
143	Can a satellite galaxy merger explain the active past of the Galactic Centre?. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2574-2584.	4.4	6
144	Accretion of clumpy cold gas on to massive black hole binaries: the challenging formation of extended circumbinary structures. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1726-1748.	4.4	5

#	ARTICLE	IF	CITATIONS
145	The role of bars on the dynamical-friction-driven inspiral of massive objects. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3365-3382.	4.4	5
146	Space-based detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	4
147	The cosmological distribution of compact object mergers from dynamical interactions with SMBH binaries. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2627-2647.	4.4	4
148	Gravitational Wave Science with Laser Interferometers and Pulsar Timing. Brazilian Journal of Physics, 2013, 43, 314-319.	1.4	3
149	Radio Pulsars: Testing Gravity and Detecting Gravitational Waves. Astrophysics and Space Science Library, 2018, , 95-148.	2.7	3
150	Stellar hardening of massive black hole binaries: the impact of the host rotation. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1533-1542.	4.4	2
151	Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection. Space Sciences Series of ISSI, 2018, , 121-145.	0.0	1
152	Summary of session C1: pulsar timing arrays. General Relativity and Gravitation, 2014, 46, 1.	2.0	0
153	Formation of discs around super-massive black hole binaries. Proceedings of the International Astronomical Union, 2014, 10, 48-51.	0.0	Ο
154	No tension between pulsar timing array upper limits on the nano-Hertz gravitational wave background and assembly models of massive black hole binaries. Journal of Physics: Conference Series, 2020, 1468, 012214.	0.4	0
155	Hardening in a Stellar Time-Evolving Background: Prospects for LISA. Globular Clusters - Guides To Galaxies, 2007, , 101-105.	0.1	Ο