
Hongchao Kou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9556207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composite structure of α phase in metastable β Ti alloys induced by lattice strain during β to α phase transformation. Acta Materialia, 2017, 132, 307-326.	7.9	80
2	Microstructure and mechanical property correlation and property optimization of a near \hat{I}^2 titanium alloy Ti-7333. Journal of Alloys and Compounds, 2016, 682, 517-524.	5.5	66
3	Microstructure and hydrogen storage properties of Mg-Ni-Ce alloys with a long-period stacking ordered phase. Journal of Power Sources, 2017, 338, 91-102.	7.8	62
4	Evolution of the secondary α phase morphologies during isothermal heat treatment in Ti-7333 alloy. Journal of Alloys and Compounds, 2013, 577, 516-522.	5.5	53
5	Hydrogen desorption performance of high-energy ball milled Mg 2 NiH 4 catalyzed by multi-walled carbon nanotubes coupling with TiF 3. International Journal of Hydrogen Energy, 2014, 39, 19672-19681.	7.1	51
6	Diffusion Research in BCC Ti-Al-Mo Ternary Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1647-1652.	2.2	44
7	Dependence of mechanical properties on the microstructure characteristics of a near Î ² titanium alloy Ti-7333. Journal of Materials Science and Technology, 2019, 35, 48-54.	10.7	41
8	Characteristics of a hot-rolled near β titanium alloy Ti-7333. Materials Characterization, 2017, 129, 135-142.	4.4	35
9	Ϊ‰-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy. Journal of Materials Science and Technology, 2020, 44, 24-30.	10.7	33
10	Precipitation of α phase and its morphological evolution during continuous heating in a near β titanium alloy Ti-7333. Materials Characterization, 2017, 132, 199-204.	4.4	32
11	Phase precipitation behavior during isothermal deformation in β-quenched near beta titanium alloy Ti-7333. Journal of Alloys and Compounds, 2016, 671, 381-388.	5.5	31
12	Microstructure and electrochemical hydrogenation/dehydrogenation performance of melt-spun La-doped Mg2Ni alloys. Materials Characterization, 2015, 106, 163-174.	4.4	29
13	Texture evolution and the recrystallization behavior in a near Î ² titanium alloy Ti-7333 during the hot-rolling process. Materials Characterization, 2020, 159, 109999.	4.4	27
14	Precipitation behavior of α phase during aging treatment in a β-quenched Ti-7333. Materials Characterization, 2018, 140, 275-280.	4.4	25
15	On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg2Ni alloys. Materials Characterization, 2013, 80, 21-27.	4.4	24
16	A phase-field approach to athermal βâ†'ï‰ transformation. Computational Materials Science, 2012, 53, 187-193.	. 3.0	21
17	Hydrogenation behavior of high-energy ball milled amorphous Mg2Ni catalyzed by multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2013, 38, 16168-16176.	7.1	21
18	Non-isothermal synergetic catalytic effect of TiF3 and Nb2O5 on dehydrogenation high-energy ball milled MgH2. Materials Chemistry and Physics, 2016, 183, 65-75.	4.0	21

Нолдснао Кои

#	Article	IF	CITATIONS
19	The origin of striation in the metastable β phase of titanium alloys observed by transmission electron microscopy. Journal of Applied Crystallography, 2017, 50, 795-804.	4.5	20
20	Precipitation of nanosized DO22 superlattice with high thermal stability in an Ni–Cr–W superalloy. Scripta Materialia, 2014, 76, 49-52.	5.2	18
21	Microstructure Characterization and Mechanical Properties of In Situ Synthesized Ti ₂ <scp>A</scp> I <scp>N</scp> I <scp>T</scp> i48 <scp>A</scp> I2 <scp>C</scp> r2 <scp>N</scp> b Composites. Advanced Engineering Materials, 2014, 16, 507-510.	3.5	17
22	Insight into solid-solution strengthened bulk and stacking faults properties in Ti alloys: a comprehensive first-principles study. Journal of Materials Science, 2018, 53, 7493-7505.	3.7	17
23	A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: Insight into atomic and electronic building blocks. Journal of Materials Research, 2020, 35, 872-889.	2.6	17
24	When a defect is a pathway to improve stability: a case study of the L12 Co3TM superlattice intrinsic stacking fault. Journal of Materials Science, 2019, 54, 13609-13618.	3.7	16
25	The ω phase transformation during the low temperature aging and low rate heating process of metastable β titanium alloys. Materials Chemistry and Physics, 2020, 239, 122125.	4.0	16
26	β to ω transformation strain associated with the precipitation of α phase in a metastable β titanium alloy. Journal of Materials Science, 2021, 56, 1685-1693.	3.7	15
27	Microstructure, phase and microhardness distribution of laser-deposited Ni-based amorphous coating. International Journal of Surface Science and Engineering, 2010, 4, 296.	0.4	10
28	Interdiffusion in FCC Co-Al-Ti Ternary Alloys. Journal of Phase Equilibria and Diffusion, 2015, 36, 127-135.	1.4	10
29	Interstitial triggered grain boundary embrittlement of Al–X (X = H, N and O). Computational Materials Science, 2019, 163, 241-247.	3.0	8
30	Finite element simulation on the deep drawing of titanium thin-walled surface part. Rare Metals, 2010, 29, 108-113.	7.1	6
31	Macrosegregation Behavior of Ti-10V-2Fe-3Al Alloy During Vacuum Consumable Arc Remelting Process. Journal of Materials Engineering and Performance, 2011, 20, 65-70.	2.5	6
32	Kinetic Diffusion Couple for Mapping Microstructural and Mechanical Data on Ti–Al–Mo Titanium Alloys. Materials, 2018, 11, 1112.	2.9	6
33	Effect of strain rate on impact response and ï‰ transformation of quenched Zr–Nb alloys. Materials Characterization, 2013, 84, 10-15.	4.4	5
34	Microstructure Changes in Zr-Based Metallic Glass Induced by Ion Milling. Rare Metal Materials and Engineering, 2010, 39, 1693-1696.	0.8	4
35	Effects of Ta addition on the microstructure and mechanical properties of Ti40Zr25Ni8Cu9Be18 amorphous alloy. International Journal of Minerals, Metallurgy, and Materials, 2007, 14, 31-35.	0.2	3
36	Modeling of Incommensurate ω Structure in the Zr-Nb Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2581-2586.	2.2	2

#	Article	IF	CITATIONS
37	In situ Observation of the Initial Stage of <i>γ</i> Lamella Formation in Ti48Al2Cr2Nb Alloy. Advanced Engineering Materials, 2017, 19, 1600670.	3.5	2
38	Deposition of Fe-based metallic glass coatings by Air Plasma Spraying process. International Journal of Surface Science and Engineering, 2010, 4, 288.	0.4	1
39	Fabrication and Microstructure Characteristic of YBCO Bulk by Directional Top-Seeded Power Melting Process. Rare Metal Materials and Engineering, 2008, 37, 1893-1897.	0.8	Ο