Leonie C Moyle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9556141/publications.pdf

Version: 2024-02-01

		201674	175258
58	3,361	27	52
papers	citations	h-index	g-index
81	81	81	4843
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inferring the Genetic Basis of Sex Determination from the Genome of a Dioecious Nightshade. Molecular Biology and Evolution, 2021, 38, 2946-2957.	8.9	2
2	Reproductive Proteins Evolve Faster Than Non-reproductive Proteins Among Solanum Species. Frontiers in Plant Science, 2021, 12, 635990.	3.6	12
3	Introgression shapes fruit color convergence in invasive $Gal \tilde{A}_i$ pagos tomato. ELife, 2021, 10, .	6.0	8
4	Highly contiguous assemblies of 101 drosophilid genomes. ELife, 2021, 10, .	6.0	108
5	A shift to shorter cuticular hydrocarbons accompanies sexual isolation among <i>Drosophila americana < /i> group populations. Evolution Letters, 2021, 5, 521-540.</i>	3.3	4
6	Testing potential mechanisms of conspecific sperm precedence in <i>Drosophila pseudoobscura</i> Journal of Evolutionary Biology, 2021, 34, 1970-1980.	1.7	0
7	Regional differences in the abiotic environment contribute to genomic divergence within a wild tomato species. Molecular Ecology, 2020, 29, 2204-2217.	3.9	39
8	Assessing biological factors affecting postspeciation introgression. Evolution Letters, 2020, 4, 137-154.	3. 3	49
9	Local extirpation is pervasive among historical populations of Galápagos endemic tomatoes. Evolutionary Ecology, 2020, 34, 289-307.	1.2	3
10	Constitutive and Plastic Gene Expression Variation Associated with Desiccation Resistance Differences in the Drosophila americana Species Group. Genes, 2020, 11, 146.	2.4	8
11	Intraspecific Genetic Variation Underlying Postmating Reproductive Barriers between Species in the Wild Tomato Clade (Solanum sect. Lycopersicon). Journal of Heredity, 2020, 111, 216-226.	2.4	8
12	A simple genetic architecture and low constraint allow rapid floral evolution in a diverse and recently radiating plant genus. New Phytologist, 2019, 223, 1009-1022.	7.3	18
13	Conspecific sperm precedence is reinforced, but postcopulatory sexual selection weakened, in sympatric populations of <i>Drosophila </i> . Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182535.	2.6	15
14	Desiccation resistance and pigmentation variation reflects bioclimatic differences in the Drosophila americana species complex. BMC Evolutionary Biology, 2019, 19, 204.	3.2	12
15	Genome Sequence of <i>Jaltomata </i> Addresses Rapid Reproductive Trait Evolution and Enhances Comparative Genomics in the Hyper-Diverse Solanaceae. Genome Biology and Evolution, 2019, 11, 335-349.	2.5	17
16	Dissecting the basis of novel trait evolution in a radiation with widespread phylogenetic discordance. Molecular Ecology, 2018, 27, 3301-3316.	3.9	59
17	Remating responses are consistent with male postcopulatory manipulation but not reinforcement in <i>D.Âpseudoobscura</i> . Ecology and Evolution, 2017, 7, 507-515.	1.9	9
18	Multiple strong postmating and intrinsic postzygotic reproductive barriers isolate florally diverse species of <i>Jaltomata</i> (Solanaceae). Evolution; International Journal of Organic Evolution, 2017, 71, 1556-1571.	2.3	26

#	Article	IF	Citations
19	Two Loci Contribute Epistastically to Heterospecific Pollen Rejection, a Postmating Isolating Barrier Between Species. G3: Genes, Genomes, Genetics, 2017, 7, 2151-2159.	1.8	9
20	Heterochronic developmental shifts underlie floral diversity within Jaltomata (Solanaceae). EvoDevo, 2017, 8, 17.	3.2	16
21	Pervasive antagonistic interactions among hybrid incompatibility loci. PLoS Genetics, 2017, 13, e1006817.	3.5	46
22	Genome-wide patterns of regulatory divergence revealed by introgression lines. Evolution; International Journal of Organic Evolution, 2016, 70, 696-706.	2.3	32
23	Molecular mechanisms of postmating prezygotic reproductive isolation uncovered by transcriptome analysis. Molecular Ecology, 2016, 25, 2592-2608.	3.9	33
24	Assortative mating and self-fertilization differ in their contributions to reinforcement, cascade speciation, and diversification. Environmental Epigenetics, 2016, 62, 169-181.	1.8	7
25	Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation. PLoS Biology, 2016, 14, e1002379.	5.6	364
26	Interspecific Tests of Allelism Reveal the Evolutionary Timing and Pattern of Accumulation of Reproductive Isolation Mutations. PLoS Genetics, 2014, 10, e1004623.	3.5	14
27	Quantitative Genetic Analysis Indicates Natural Selection on Leaf Phenotypes Across Wild Tomato Species (<i>Solanum</i> sect. <i>Lycopersicon</i> species (<i>Solanaceae). Genetics, 2014, 198, 1629-1643.</i>	2.9	56
28	Intraspecific sperm competition genes enforce post-mating species barriers in <i>Drosophila</i> Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142050.	2.6	31
29	Merging Ecology and Genomics to Dissect Diversity in Wild Tomatoes and Their Relatives. Advances in Experimental Medicine and Biology, 2014, 781, 273-298.	1.6	13
30	Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (<i><scp>S</scp>olanum</i> sect. <i><scp>L</scp>ycopersicon</i> , sect.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 1415-1426.	O 302 Td (<i><i><scp>L</scp></i></i>
31	No evidence for phylogenetic constraint on natural defense evolution among wild tomatoes. Ecology, 2014, 95, 1633-1641.	3.2	39
32	Fertile approaches to dissecting mechanisms of premating and postmating prezygotic reproductive isolation. Current Opinion in Plant Biology, 2014, 18, 16-23.	7.1	27
33	Sequencing, Assembling, and Correcting Draft Genomes Using Recombinant Populations. G3: Genes, Genomes, Genetics, 2014, 4, 669-679.	1.8	36
34	Evolutionary Implications of Mechanistic Models of TE-Mediated Hybrid Incompatibility. International Journal of Evolutionary Biology, 2012, 2012, 1-12.	1.0	17
35	Hybrid Sterility over Tens of Meters Between Ecotypes Adapted to Serpentine and Non-Serpentine Soils. Evolutionary Biology, 2012, 39, 207-218.	1,1	32
36	The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function. Plant Journal, 2012, 69, 655-666.	5.7	96

#	Article	IF	CITATIONS
37	PATTERNS OF REPRODUCTIVE ISOLATION IN NOLANA (CHILEAN BELLFLOWER). Evolution; International Journal of Organic Evolution, 2012, 66, 2628-2636.	2.3	45
38	Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sexual Plant Reproduction, 2011, 24, 171-187.	2.2	112
39	Hybrid Incompatibility "Snowballs―Between <i>Solanum</i> Species. Science, 2010, 329, 1521-1523.	12.6	211
40	Reciprocal insights into adaptation from agricultural and evolutionary studies in tomato. Evolutionary Applications, 2010, 3, 409-421.	3.1	19
41	THE CONTRIBUTION OF GENE MOVEMENT TO THE "TWO RULES OF SPECIATION― Evolution; International Journal of Organic Evolution, 2010, 64, 1541-1557.	2.3	55
42	Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany, 2010, 97, 680-693.	1.7	257
43	Complex Epistasis for Dobzhansky–Muller Hybrid Incompatibility in Solanum. Genetics, 2009, 181, 347-351.	2.9	33
44	Reproductive isolation grows on trees. Trends in Ecology and Evolution, 2009, 24, 591-598.	8.7	28
45	Antagonistic epistasis for ecophysiological trait differences between <i>Solanum</i> species. New Phytologist, 2009, 183, 789-802.	7.3	23
46	ENVIRONMENTAL FACTORS PREDICT ADAPTIVE PHENOTYPIC DIFFERENTIATION WITHIN AND BETWEEN TWO WILD ANDEAN TOMATOES. Evolution; International Journal of Organic Evolution, 2008, 62, 774-792.	2.3	86
47	ECOLOGICAL AND EVOLUTIONARY GENOMICS IN THE WILD TOMATOES (SOLANUM SECT. LYCOPERSICON). Evolution; International Journal of Organic Evolution, 2008, 62, 2995-3013.	2.3	107
48	Genetic underpinnings of postzygotic reproductive barriers among plants. New Phytologist, 2008, 179, 572-574.	7.3	7
49	Comparative Genetics of Hybrid Incompatibility: Sterility in Two Solanum Species Crosses. Genetics, 2008, 179, 1437-1453.	2.9	63
50	Asymmetric Postmating Isolation: Darwin's Corollary to Haldane's Rule. Genetics, 2007, 176, 1059-1088.	2.9	345
51	Comparative Genetics of Potential Prezygotic and Postzygotic Isolating Barriers in a Lycopersicon Species Cross. Journal of Heredity, 2007, 98, 123-135.	2.4	32
52	Correlates of genetic differentiation and isolation by distance in 17 congeneric Silene species. Molecular Ecology, 2006, 15, 1067-1081.	3.9	53
53	Genome-Wide Associations Between Hybrid Sterility QTL and Marker Transmission Ratio Distortion. Molecular Biology and Evolution, 2006, 23, 973-980.	8.9	65
54	Genetics of Hybrid Incompatibility Between Lycopersicon esculentum and L. hirsutum. Genetics, 2005, 169, 355-373.	2.9	110

#	Article	IF	CITATIONS
55	Assessing the origin of species in the genomic era. Genome Biology, 2005, 6, 217.	9.6	3
56	PATTERNS OF REPRODUCTIVE ISOLATION IN THREE ANGIOSPERM GENERA. Evolution; International Journal of Organic Evolution, 2004, 58, 1195-1208.	2.3	213
57	POPULATION VIABILITY ANALYSIS IN ENDANGERED SPECIES RECOVERY PLANS: PAST USE AND FUTURE IMPROVEMENTS. , 2002, 12, 708-712.		110
58	Most Ingenious: Troubles and Triumphs of a Century of Genes. Biology and Philosophy, 2002, 17, 715-727.	1.4	2